【題目】1.概念學習.已知,點為其內(nèi)部一點,連接、、,在、、中,如果存在一個三角形,其內(nèi)角與的三個內(nèi)角分別相等,那么就稱點為的等角點.
2.理解應用
(1)判斷以下兩個命題是否為真今題,若為真令題,則在相應橫線內(nèi)寫“真命題”;反之,則寫“假命題”.
①內(nèi)角分別為、、的三角形存在等角點; ;
②任意的三角形都存在等角點; ;
(2)如圖①,點是銳角的等角點,若,探究圖①中,、、之間的數(shù)量關系,并說明理由.
3.解決問題
如圖②,在中,,若的三個內(nèi)角的角平分線的交點是該三角形的等角點,求三角形三個內(nèi)角的度數(shù).
【答案】(1)真,假;(2)∠BPC=∠ABC+∠ACP,證明見解析(3),,.
【解析】
(1)根據(jù)等角點的定義,可知內(nèi)角分別為30、60、90的三角形存在等角點,而等邊三角形不存在等角點,據(jù)此判斷即可;
(2)根據(jù)△ABC中,∠BPC=∠ABP+∠BAC+∠ACP以及∠BAC=∠PBC進行推導,即可得出∠BPC、∠ABC、∠ACP之間的數(shù)量關系;
(3)根據(jù)△ABC的三個內(nèi)角的角平分線的交點P是該三角形的等角點,以及三角形內(nèi)角和為180°,得出關于∠A的方程,求得∠A的度數(shù)即得出可三角形三個內(nèi)角的度數(shù).
解:(1)①內(nèi)角分別為30、60、90的三角形存在等角點是真命題;
②任意的三角形都存在等角點是假命題,如等邊三角形不存在等角點;
故答案為:真,假;
(2)∠BPC=∠ABC+∠ACP,理由如下:
如圖①,
∵在△ABC中,∠BPC=∠ABP+∠BAC+∠ACP,∠BAC=∠PBC,
∴∠BPC=∠ABP+∠PBC+∠ACP=∠ABC+∠ACP;
(3)∵P為△ABC的角平分線的交點,
∴∠PBC=∠ABC,∠PCB=∠ACB,
∵P為△ABC的等角點,
∴∠PBC=∠BAC,∠BCP=∠ABC=2∠PBC=2∠BAC,∠ACB=∠BPC=4∠A,
又∵∠A+∠ABC+∠ACB=180°,
∴∠A+2∠A+4∠A=180°,
∴∠A=,
∴該三角形三個內(nèi)角的度數(shù)分別為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長線于點F,若BC恰好平分∠ABF,AE=2BF.給出下列四個結論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結論共有( 。
A. ①②③④ B. ①②④ C. ①②③ D. ②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2﹣x+2與x軸交于A、B兩點,與y軸交于點C
(1)求點A,B,C的坐標;
(2)點E是此拋物線上的點,點F是其對稱軸上的點,求以A,B,E,F為頂點的平行四邊形的面積;
(3)此拋物線的對稱軸上是否存在點M,使得△ACM是等腰三角形?若存在,請求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,甲、乙兩人在道路的兩邊相向而行,當甲、乙兩人分別行至點A、C時,測得乙在甲的北偏東60°方向上.乙留在原地休息,甲繼續(xù)向前走了40米到B處,此時測得乙在其北偏東30°方向上.求道路的寬(參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知 AD 是△ABC 的邊 BC 上的中線.
(1)作出△ABD 的邊 BD 上的高.
(2)若△ABC 的面積為 10,求△ADC 的面積.
(3)若△ABD 的面積為 6,且 BD 邊上的高為 3,求 BC 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,給出五個等量關系:①AD=BC;②AC=BD;③CE=DE;④∠D=∠C;⑤∠DAB=∠CBA.
請你以其中兩個為條件,另外三個中的一個為結論,推出一個正確的結論(只需寫出一種情況),并加以證明.
已知:
求證:
證明:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:四邊形ABCD中,對角線BD平分∠ABC,∠DCB=123°,∠ABC=50°,并且∠BAD+∠CAD=180°,那么∠DAC的度數(shù)為_________度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com