.求71999×32001的末位數(shù)字.

71999×32001=71999×31999×32=211999×9.

不論多少1的乘積,其結果仍然是1,所以71999×32001的末位數(shù)字是9.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•牡丹江)某校為了更好地開展球類運動,體育組決定用1600元購進足球8個和籃球14個,并且籃球的單價比足球的單價多20元,請解答下列問題:
(1)求出足球和籃球的單價;
(2)若學校欲用不超過3240元,且不少于3200元再次購進兩種球50個,求出有哪幾種購買方案?
(3)在(2)的條件下,若已知足球的進價為50元,籃球的進價為65元,則在第二次購買方案中,哪種方案商家獲利最多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

我市某地為了貫徹落實“森林重慶”,深入開展“綠化長江---重慶行動”.現(xiàn)決定對該地區(qū)培育種植樹苗的農(nóng)民實行政府補貼,規(guī)定每種植一畝樹苗一次性補貼農(nóng)民若干元,隨著補貼數(shù)額的不斷增大,生產(chǎn)規(guī)模也不斷增加,但每畝樹苗的收益會相應降低.經(jīng)調查,種植畝數(shù)y(畝)、每畝樹苗的收益z(元)與補貼數(shù)額x(元)之間的一次函數(shù)關系如下表:
x(元) 0 100 200 300
y(畝) 800 1600 2400 3200
z(元) 3000 2700 2400 2100
(1)分別求出政府補貼政策實施后種植畝數(shù)y、每畝樹苗的收益z與政府補貼數(shù)額x之間的函數(shù)關系式:
(2)要使該地區(qū)種植樹苗的總收益w(元)最大,政府應將每畝補貼數(shù)額x定為多少?并求出總收益w的最大值和此時種植的畝數(shù);(總收益=種植畝數(shù)×每畝樹苗的收益)
(3)在取得最大收益的情況下,經(jīng)市場調查,培育種植水果類樹苗經(jīng)濟效益更好.今年該地區(qū)決定用種植樹苗總面積m%的土地種植水果類樹苗,因環(huán)境和經(jīng)濟等因素的制約,種植水果類樹苗的面積不超過300畝.經(jīng)測算,種植水果類樹苗需用的支架、塑料膜等材料每畝費用為2700元,此外還需購置噴灌設備,這項費用(元)與種植水果類樹苗面積(畝)的平方成正比例,比例系數(shù)9.預計今年種植水果類樹苗后的這部分土地的收益比沒種前的收益每畝增加了7500元,這樣,該地區(qū)今年因種植水果類樹苗而增加的收益(扣除材料費和設備費后)共570000元,求m的值.(結果精確到個位,參考數(shù)據(jù):
7
≈2.648
,
11
≈3.316
).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某加工廠生產(chǎn)A、B兩種產(chǎn)品.經(jīng)調查,該加工廠每天生產(chǎn)A鐘產(chǎn)品200件,需700千克原料,或每天生產(chǎn)B種產(chǎn)品150件,需400千克原料(A、B兩種產(chǎn)品不能同一天生產(chǎn)).已知該加工廠每周只能采購到不超過3000千克原料,設一周內(每周上班5天)生產(chǎn)A種產(chǎn)品x天,生產(chǎn)A、B兩種產(chǎn)品數(shù)量的總和為y件.
(1)求y關于x的函數(shù)關系式;
(2)求該加工廠每周應安排生產(chǎn)A、B兩種產(chǎn)品各多少天,才能使得每周生產(chǎn)的產(chǎn)品數(shù)量最多,最多能生產(chǎn)多少件產(chǎn)品?
(3)下表是該加工廠最近三周所用原料和所生產(chǎn)的產(chǎn)品的總和明細表,你認為這個報表是否準確,請說明理由.
第一周 第二周 第三周
原料總和(單位:千克) 2300 2900 3200
產(chǎn)品總和(單位:件) 800 850 950

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某旅游景點團體門票票價如下:
購票人數(shù) 1~50 51~100 100人以上
每人門票(元) 30元 25元 20元
今有甲、乙兩個旅行團,已知甲團人數(shù)少于50人,乙團人數(shù)不超過100人.若分別購票,兩團共計應付門票費3200元,若合在一起作為一個團體購票,總計應付門票費2400元.
(1)請你判斷乙團的人數(shù)是否也少于50人;
(2)求甲、乙兩個旅行團各有多少人?

查看答案和解析>>

同步練習冊答案