如圖1,在平面直角坐標系中,有一矩形ABCD,其三個頂點的坐標分別為A(2,0)、B(8,0)、C(8,3).將直線l:y=-3x-3以每秒3個單位的速度向右運動,設運動時間為t秒.
(1)當t=_________時,直線l經過點A.(直接填寫答案)
(2)設直線l掃過矩形ABCD的面積為S,試求S>0時S與t的函數關系式.
(3)在第一象限有一半徑為3、且與兩坐標軸恰好都相切的⊙M,在直線l出發(fā)的同時,⊙M以每秒2個單位的速度向右運動,如圖2所示,則當t為何值時,直線l與⊙M相切?
(1)1;
(2)當1<t≤時,S=;
當<t≤3時,S=9t-;
當3<t≤時,S=- (3t-10)2+18;
當t>時,S=18;
(3)t=5-或t=5+.
【解析】
試題分析:(1)y=-3x-3與x軸交點坐標是(-1,0),直線l經過點A(2,0),故向右平移3個單位長度,直線l:y=-3x-3以每秒3個單位的速度向右運動,所以t=1;
(2)求出直線l:y=﹣3x+9t﹣3,再分情況討論;
(3)分兩種情況討論,借助三角形相似即可.
試題解析:(1)y=-3x-3與x軸交點坐標是(-1,0),直線l經過點A(2,0),故向右平移3個單位長度,直線l:y=-3x-3以每秒3個單位的速度向右運動,所以t=1;
(2)由題意,可知矩形ABCD頂點D的坐標為(2,3).
由一次函數的性質可知,當t由小到大變化時,直線l:y=﹣3(x﹣3t)-3=﹣3x+9t﹣3向右平移,依次掃過矩形ABCD的不同部分.
可得當直線經過A(2,0)時,t=1;當直線經過D(2,3)時,t=;當直線經過B(8,0)時,t=3;當直線經過C(8,3)時,t=.
①當1<t≤時, 如圖所示.
設直線l:y=-3x+9t﹣3與x軸交于點P,與AD交于點Q.
令y=0,可得x=3t﹣1,∴AP=3t﹣3;
令x=2,可得y=9t﹣9,∴AQ=9t﹣9.
∴S=S△APQ=AP•AQ=(3t﹣3)( 9t﹣9)=;
②當<t≤3時,如圖所示.
設直線l:y=-3x+9t﹣3與x軸交于點P,與CD交于點Q.
令y=0,可得x=3t﹣1,∴AP=3t﹣3;
令y=3,可得x=3t﹣2,∴DQ=3t﹣4.
S=S梯形APQD=(DQ+AP)•AD=9t-;
③當3<t≤時,如圖所示.
設直線l:y=-3x+9t﹣3與BC交于點P,與CD交于點Q.
令x=8,可得y=9t﹣27,∴BP=9t﹣27,CP=30﹣9t;
令y=3,可得x= 3t﹣2,∴DQ= 3t﹣4,CQ=10﹣3t.
S=S矩形ABCD﹣S△PQC=18﹣CP•CQ=-(3t-10)2+18;
④當t>時,S=S矩形ABCD=18.
綜上所述, S與t的函數關系式為:
;
(3)若直線l:y=﹣3x+9t﹣3與⊙M相切,如圖所示,應有兩條符合條件的切線.
設直線與x軸、y軸交于A、B點,則A(3t﹣1,0)、B(0,9t﹣3),∴OB=3OA.
由題意,可知⊙M與x軸相切,設切點為D,連接MD;
設直線與⊙M的一個切點為P,連接MP并延長交x軸于點G;過P點作PN⊥MD于點N,PH⊥x軸于點H.
易證△PMN∽△BAO,∴PN:MN=OB:OA=3,∴PN=3MN.
在Rt△PMN中,由勾股定理得:PM2=PN2+MN2,解得: MN=,PN=,
∴PH=ND=MD﹣MN=3﹣,OH=OD﹣HD=OD﹣PN=2t+3﹣,
∴P(2t+3﹣,3﹣),代入直線解析式求得:t=5﹣;
同理,當切線位于另外一側時,可求得:t=5+.
考點:動點問題.
科目:初中數學 來源: 題型:
8 | x |
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,在平面直角坐標系xOy中,一次函數y=kx+b(k≠0)的圖象與反比例函數y= (m≠0)的圖象交于第二、四象限內的A、B兩點,與x軸交于C點,點B的坐 標為(6,n).線段OA=5,E為x軸上一點,且sin ∠AOE=.
1.求該反比例函數和一次函數的解析式
2.求△AOC的面積
查看答案和解析>>
科目:初中數學 來源:2010年北京市豐臺區(qū)中考數學二模試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數學 來源:2012年初中畢業(yè)升學考試(四川巴中卷)數學(解析版) 題型:解答題
如圖,在平面直角坐標系中,一次函數的圖象與y軸交于點A,
與x軸交于點B,與反比例函數的圖象分別交于點M,N,已知△AOB的面積為1,點M的縱坐
標為2,
(1)求一次函數和反比例函數的解析式;
(2)直接寫出時x的取值范圍。
查看答案和解析>>
科目:初中數學 來源:2013屆湖南省八年級反比例函數測試數學試卷(解析版) 題型:填空題
如圖,在平面直角坐標系xOy中,一次函數y=kx+b(k≠0)的圖象與反比例函數y= (m≠0)的圖象交于第二、四象限內的A、B兩點,與x軸交于C點,點B的坐 標為(6,n).線段OA=5,E為x軸上一點,且sin ∠AOE=.
1.求該反比例函數和一次函數的解析式
2.求△AOC的面積
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com