【題目】如圖,點(diǎn)E、點(diǎn)F分別是等邊△ABC的邊ABAC上的點(diǎn),且BE=AF,CEBF 相交于點(diǎn)P,則∠BPC的大小為_____

【答案】120°

【解析】

欲求BPC的大小,需證得ACE≌△BCF;利用全等三角形的性質(zhì)得到BCE=ABF,則由圖示知PBC+PCB=PBC+ABF=ABC=60°,即PBC+PCB=60°,所以根據(jù)三角形內(nèi)角和定理求得BPC=120°.

解:∵△ABC是等邊三角形,
AC=BC,A=BCF=60°,AB=AC,
BE=AF,
AE=CF,
ACE與BCF中,

∴△ACE≌△BCF(SAS),

∴△ABFBCE,
∴∠BCE=ABF,
∴∠PBC+PCB=PBC+ABF=ABC=60°,即PBC+PCB=60°,
∴∠BPC=180°-60°=120°.

故答案為:BPC=120°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:線段AB.

(1)尺規(guī)作圖:作線段AB的垂直平分線l,與線段AB交于點(diǎn)D;(保留作圖痕跡,不寫作法)

(2)在(1)的基礎(chǔ)上,點(diǎn)C為l上一個(gè)動(dòng)點(diǎn)(點(diǎn)C不與點(diǎn)D重合),連接CB,過點(diǎn)A作AE⊥BC,垂足為點(diǎn)E.

①當(dāng)垂足E在線段BC上時(shí),直接寫出∠ABC度數(shù)的取值范圍.

②若∠B=60,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9分某餐廳中,一張桌子可坐6人,有以下兩種擺放方式:

1有4張桌子,用第一種擺設(shè)方式,可以坐___________人;當(dāng)有 張桌子時(shí),用第二種擺設(shè)方式可以坐___________人用含有n的代數(shù)式表示

2一天中午,餐廳要接待85位顧客共同就餐,但餐廳中只有20張這樣的長方形桌子可用,且每4張拼成一張大桌子,若你是這家餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某校九年級(jí)學(xué)生的跳高水平,隨機(jī)抽取該年級(jí)50名學(xué)生進(jìn)行跳高測(cè)試,并把測(cè)試成績繪制成如圖所示的頻數(shù)表和未完成的頻數(shù)直方圖(每組含前一個(gè)邊界值,不含后一個(gè)邊界值).

某校九年級(jí)50名學(xué)生跳高測(cè)試成績的頻數(shù)表

組別(m)

頻數(shù)

1.09~1.19

8

1.19~1.29

12

1.29~1.39

A

1.39~1.49

10

(1)求a的值,并把頻數(shù)直方圖補(bǔ)充完整;

(2)該年級(jí)共有500名學(xué)生,估計(jì)該年級(jí)學(xué)生跳高成績?cè)?.29m(含1.29m)以上的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形ABCD中,動(dòng)點(diǎn)F,E分別以相同的速度從D,C兩點(diǎn)同時(shí)出發(fā)向C和B運(yùn)動(dòng)(任何一個(gè)點(diǎn)到達(dá)即停止),過點(diǎn)P作PM∥CD交BC于M點(diǎn),PN∥BC交CD于N點(diǎn),連接MN,在運(yùn)動(dòng)過程中,則下列結(jié)論:
①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PEBF;⑤線段MN的最小值為
其中正確的結(jié)論有( )

A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,以AB為直徑作⊙O,交BC于點(diǎn)D,交CA的延長線于點(diǎn)E,連接AD、DE.
(1)求證:D是BC的中點(diǎn);
(2)若DE=3,BD﹣AD=2,求⊙O的半徑;
(3)在(2)的條件下,求弦AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題。

1)如圖,在ABC中,AC=BC,∠ACB=90°,直線l過點(diǎn)C,分別過A、B兩點(diǎn)作ADl于點(diǎn)D,作BEl于點(diǎn)E.求證:DE=AD+BE.

2)如圖,已知RtABC,∠C=90°.用尺規(guī)作圖法作出ABC的角平分線AD;(不寫作法,保留作圖痕跡)

3)若AB=10,CD=3,求ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. 長方形的長是,寬比長短25,則它的周長可表示為

B. 表示底為6,高為的三角形的面積

C. 表示一個(gè)兩位數(shù),它的個(gè)位數(shù)字是十位數(shù)字是

D. 甲、乙兩人分別從相距40千米的兩地相向出發(fā),其行走的速度分別為3千米/小時(shí)和5千米/小時(shí),經(jīng)過小時(shí)相遇,則可列方程為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x﹣4與拋物線y=ax2+bx+c相交于A,B兩點(diǎn),其中A,B兩點(diǎn)的橫坐標(biāo)分別為﹣1和﹣4,且拋物線過原點(diǎn).

(1)求拋物線的解析式;
(2)在坐標(biāo)軸上是否存在點(diǎn)C,使△ABC為等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)若點(diǎn)P是線段AB上不與A,B重合的動(dòng)點(diǎn),過點(diǎn)P作PE∥OA,與拋物線第三象限的部分交于一點(diǎn)E,過點(diǎn)E作EG⊥x軸于點(diǎn)G,交AB于點(diǎn)F,若S△BGF=3S△EFP , 求 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案