已知AB與⊙O相切于點C,OA=OB,OA、OB與⊙O分別交于點D、E.
(I)如圖①,若⊙O的直徑為8,AB=10,求OA的長(結果保留根號);
(II)如圖②,連接CD、CE,若四邊形ODCE為菱形,求
OD
OA
的值.
(1)如圖①,連接OC,則OC=4,
∵AB與⊙O相切于點C,∴OC⊥AB,
∴在△OAB中,由AO=OB,AB=10,
得AC=
1
2
AB=5.
在Rt△AOC中,由勾股定理得OA=
OC2+AC2
=
42+52
=
41
;

(2)如圖②,連接OC,則OC=OD,
∵四邊形ODCE為菱形,∴OD=CD,
∴△ODC為等邊三角形,有∠AOC=60°.
由(1)知,∠OCA=90°,∴∠A=30°,
∴OC=
1
2
OA,∴
OD
OA
=
1
2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在以點O為圓心的兩個同心圓中,大圓的半徑OA與小圓相交于點B,AC與小圓相切于點C,OC的延長線與大圓相交于點D,AC與BD相交于點E.
求證:(1)BD是小圓的切線;
(2)CE:AE=OC:OD.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,O是正方形ABCD的對角線BD上一點,⊙O與邊AB,BC都相切,點E,F(xiàn)分別在AD,DC上,現(xiàn)將△DEF沿著EF對折,折痕EF與⊙O相切,此時點D恰好落在圓心O處.若DE=2,則正方形ABCD的邊長是(  )
A.3B.4C.2+
2
D.2
2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,PA、PB切⊙O于A、B,若∠APB=60°,⊙O半徑為3,求陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,BC是⊙O的切線,C是切點,AC是⊙O的弦,AO的延長線交BC于點B,設⊙O的半徑為
5
,∠ACB=120°.求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(人教版)已知:OA、OB是⊙O的半徑,且OA⊥OB,P是射線OA上一點(點A除外),直線BP交⊙O于點Q,過Q作⊙O的切線交直線OA于點E.
(1)如圖①,若點P在線段OA上,求證:∠OBP+∠AQE=45°;
(2)若點P在線段OA的延長線上,其它條件不變,∠OBP與∠AQE之間是否存在某種確定的等量關系?請你完成圖②,并寫出結論(不需要證明).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,BE是⊙O的直徑,點A在EB的延長線上,弦PD⊥BE,垂足為C,∠AOD=∠APC.
求證:AP是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在△ABC中,分別以AB,AC為直徑在△ABC外作半圓O1和半圓O2,其中O1和O2分別為兩個半圓的圓心.F是邊BC的中點,點D和點E分別為兩個半圓圓弧的中點.

(1)如圖一,連接O1F,O1D,DF,O2F,O2E,EF,證明:△DO1F≌△FO2E;
(2)過點A分別作半圓O1和半圓O2的切線,交BD的延長線和CE的延長線于點P和點Q,連接PQ,①如圖二,若∠ACB=90°,DB=5,CE=3,求線段PQ的長;②如圖三,若連接FA,猜想PQ與FA的位置關系,并說明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖的⊙A和⊙B是抗日戰(zhàn)爭時期敵人要塞陣地的兩個“母子碉堡”,被稱為“母碉堡”A的半徑是6米,“子碉堡”B的半徑是3米,兩個碉堡中心的距離AB=80米.我偵察兵在安全地帶P的視線恰好與敵人的“母子碉堡”都相切,為了打擊敵人,必須準確地計算出點P到敵人兩座碉堡中心的距離PA和PB的大小,請你利用圓的知識計算出PA=______,PB=______.

查看答案和解析>>

同步練習冊答案