【題目】如圖,等腰直角ABC中,AB=AC=8,以AB為直徑的半圓O交斜邊BCD,則陰影部分面積為(結(jié)果保留π)( )

A. 16 B. 24-4π C. 32-4π D. 32-8π

【答案】B

【解析】試題分析:連接AD,因為ABC是等腰直角三角形,故∠ABD=45°,再由AB是圓的直徑得出∠ADB=90°,故ABD也是等腰直角三角形,所以,S陰影=SABC-SABD-S弓形AD由此可得出結(jié)論.

解:連接ADOD,

∵等腰直角ABC中,

∴∠ABD=45°.

AB是圓的直徑,

∴∠ADB=90°

∴△ABD也是等腰直角三角形,

.

AB=8,

AD=BD=4,

S陰影=SABCSABDS弓形AD=SABCSABD(S扇形AODSABD)

=×8×8×4×4+××4×4

=32-164π+8

=244π.

故選B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+2x+c經(jīng)過點A03),B﹣10),請解答下列問題:

1)求拋物線的解析式;

2)拋物線的頂點為點D,對稱軸與x軸交于點E,連接BD,求BD的長.

注:拋物線y=ax2+bx+ca≠0)的頂點坐標是(,).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,拋物線y=﹣x2+bx+c經(jīng)過直線y=﹣x+3與坐標軸的兩個交點A,B,此拋物線與x軸的另一個交點為C,拋物線的頂點為D.

(1)求此拋物線的解析式;

(2)若點M為拋物線上一動點,是否存在點M,使△ACM與△ABC的面積相等?若存在,求點M的坐標;若不存在,請說明理由.

(3)在x軸上是否存在點N使△ADN為直角三角形?若存在,確定點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,規(guī)定:拋物線的伴隨直線為.例如:拋物線的伴隨直線為,即y=2x1

1)在上面規(guī)定下,拋物線的頂點坐標為   ,伴隨直線為   ,拋物線與其伴隨直線的交點坐標為      ;

2)如圖,頂點在第一象限的拋物線與其伴隨直線相交于點A,B(點A在點B的左側(cè)),與x軸交于點C,D

①若∠CAB=90°,求m的值;

②如果點Px,y)是直線BC上方拋物線上的一個動點,PBC的面積記為S,當S取得最大值時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ACBC,垂足為C,AC=4,BC=3,將線段AC繞點A按逆時針方向旋轉(zhuǎn)60°,得到線段AD,連接DC,DB

(1)求線段CD的長;

(2)求線段DB的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,點CAB的延長線上,AD平分∠CAE⊙O于點D,且AE⊥CD,垂足為點E

1)求證:直線CE⊙O的切線.

2)若BC=3,CD=3,求弦AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一張正三角形的紙片的邊長為2cmD、E、F分別是邊AB、BC、CA(含端點)上的點,設BDCEAFxcm),DEF的面積為ycm2).

1)求y關(guān)于x的函數(shù)表達式和自變量的取值范圍;

2)求DEF的面積y的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,BC2.現(xiàn)分別任作ABC的內(nèi)接矩形P1Q1M1N1P2Q2M2N2,P3Q3M3N3,設這三個內(nèi)接矩形的周長分別為c1c2,c3,則c1+c2+c3的值是(  )

A. 6B. C. 12D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某路燈在鉛錘面內(nèi)的示意圖,燈柱AC的高為15.25米,燈桿AB與燈柱AC的夾角∠A120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長為22米,從D、E兩處測得路燈B的仰角分別為αβ,且tanα8,tanβ,求燈桿AB的長度.

查看答案和解析>>

同步練習冊答案