【題目】計(jì)算下列各題
(1)化簡(jiǎn):( ﹣1)÷
(2)關(guān)于x的一元二次方程kx2+2x﹣3=0有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍.
【答案】
(1)解:原式=( ﹣ )
=﹣
=﹣
(2)解:∵關(guān)于x的一元二次方程kx2+2x﹣3=0有兩個(gè)不相等的實(shí)數(shù)根,
∴k≠0,且△>0,即22﹣4×k×(﹣3)>0,
解得k>﹣ 且k≠0
【解析】(1)先將括號(hào)內(nèi)的式子通分,再將除法轉(zhuǎn)化為乘法,然后約分計(jì)算即可;(2)根據(jù)一元二次方程的定義以及根的判別式得到k≠0且△>0,即22﹣4×k×(﹣3)>0,然后解兩個(gè)不等式即可得到k的取值范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解分式的混合運(yùn)算的相關(guān)知識(shí),掌握運(yùn)算的順序:第一級(jí)運(yùn)算是加法和減法;第二級(jí)運(yùn)算是乘法和除法;第三級(jí)運(yùn)算是乘方.如果一個(gè)式子里含有幾級(jí)運(yùn)算,那么先做第三級(jí)運(yùn)算,再作第二級(jí)運(yùn)算,最后再做第一級(jí)運(yùn)算;如果有括號(hào)先做括號(hào)里面的運(yùn)算.如順口溜:"先三后二再做一,有了括號(hào)先做里."當(dāng)有多層括號(hào)時(shí),先算括號(hào)內(nèi)的運(yùn)算,從里向外{[(?)]},以及對(duì)求根公式的理解,了解根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒有實(shí)數(shù)根.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖①,在直角三角形ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,可知:∠BAD=∠C(不需要證明);
特例探究:如圖②,∠MAN=90°,射線AE在這個(gè)角的內(nèi)部,點(diǎn)B、C在∠MAN的邊AM、AN上,且AB=AC, CF⊥AE于點(diǎn)F,BD⊥AE于點(diǎn)D.證明:△ABD≌△CAF;
歸納證明:如圖③,點(diǎn)BC在∠MAN的邊AM、AN上,點(diǎn)EF在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC, ∠1=∠2=∠BAC.求證:△ABE≌△CAF;
拓展應(yīng)用:如圖④,在△ABC中,AB=AC,AB>BC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,則△ACF與△BDE的面積之和為 .(12分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC,△ADE 均是等腰直角三角形,BC 與 DE 相交于 F 點(diǎn),若 AC=AE=1,則四邊形 AEFC 的周長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長(zhǎng)方形 ABCD 中,AB=8,AD=10,點(diǎn) E 為 BC 上一點(diǎn),將△ABE 沿 AE 折疊,使點(diǎn) B 落在長(zhǎng)方形內(nèi)點(diǎn) F 處, 且 DF=6,求 BE 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD相交于點(diǎn)O,過點(diǎn)O作兩條射線OM,ON,且∠AOM=∠CON=90°.
(1)若OC平分∠AOM,求∠AOD的度數(shù);
(2)若∠1=∠BOC,求∠AOC和∠MOD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC的面積為84,BC=21,現(xiàn)將△ABC沿直線BC向右平移a(0<a<21)個(gè)單位到△DEF的位置.
(1)求BC邊上的高;
(2)若AB=10,
①求線段DF的長(zhǎng);
②連結(jié)AE,當(dāng)△ABE時(shí)等腰三角形時(shí),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一長(zhǎng)方形花園用來種植菊花和郁金香,其余作為休息區(qū);
(1)求種植菊花和郁金香的面積;
(2)當(dāng)m,m時(shí),種植菊花和郁金香的面積是多少m2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點(diǎn)A為圓心,BC長(zhǎng)為半徑畫弧交AB于點(diǎn)D,分別以點(diǎn)A、D為圓心,AB長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)E,連接AE,DE,則∠EAD的余弦值是( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com