【題目】如圖,已知AB=2,BF=8,BC=AE=6,CE=CF=7,則△CDF與四邊形ABDE的面積比值是( )
A. 1:1 B. 2:1 C. 1:2 D. 2:3
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下面四個方程:x+y=2,xy=1,x=cos60°,y+2x=5
(1)任意兩個方程所組成的方程組是二元一次方程組的概率是多少?
(2)請找出一個解是整數(shù)的二元一次方程組,并直接寫出這個方程組的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進(jìn)價為每件20元的護(hù)眼臺燈.物價部門規(guī)定,這種護(hù)眼臺燈的銷售單價不得高于32元.銷售過程中發(fā)現(xiàn),月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+n.
(1)當(dāng)銷售單價x定為25元時,李明每月獲得利潤為w為1250元,則n=;
(2)如果李明想要每月獲得2000元的利潤,那么銷售單價應(yīng)定為多少元?
(3)當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?并求最大利潤為多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣8與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,直線l經(jīng)過坐標(biāo)原點(diǎn)O,與拋物線的一個交點(diǎn)為D,與拋物線的對稱軸交于點(diǎn)E,連接CE,已知點(diǎn)A,D的坐標(biāo)分別為(﹣2,0),(6,﹣8).
(1)求拋物線的函數(shù)表達(dá)式,并分別求出點(diǎn)B和點(diǎn)E的坐標(biāo);
(2)試探究拋物線上是否存在點(diǎn)F,使△FOE≌△FCE?若存在,請直接寫出點(diǎn)F的坐標(biāo);若不存在,請說明理由;
(3)若點(diǎn)P是y軸負(fù)半軸上的一個動點(diǎn),設(shè)其坐標(biāo)為(0,m),直線PB與直線l交于點(diǎn)Q,試探究:當(dāng)m為何值時,△OPQ是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某年級共有330名男生,為了解該年級男生1000米跑步成績(單位:分/秒)的情況,從中隨機(jī)抽取30名男生進(jìn)行測試,獲得了他們的相關(guān)成績,并對數(shù)據(jù)進(jìn)行整理、描述和分析.下面給出了部分信息.
a.1000米跑步的頻數(shù)分布表如下:
分組 | 3′17″<x≤3′ 37″ | 3′37″<x≤3′ 57″ | 3′ 57″<x≤4′ 17″ | 4′ 17″<x≤4′ 37″ | 4′ 37″<x≤4′ 57″ | 4′ 57″<x≤5′ 17″ |
頻數(shù) | 10 | 9 | m | 2 | 2 | 1 |
注:3′37″即3分37秒
b.1000米跑步在3′37″<x≤3′57″這一組是:
3′39 ″ 3′42 ″ 3′45 ″ 3′45″ 3′50 ″ 3′52 ″ 3′53″ 3′55″ 3′57″
根據(jù)以上信息,回答下列問題:
(1)表中m的值為 ;
(2)根據(jù)表頻數(shù)分布表畫出相應(yīng)的頻數(shù)分布直方圖.
(3)若男生1000米跑步成績等于或者優(yōu)于3′52″,成績記為優(yōu)秀.請估計全年級男生跑步成績達(dá)到優(yōu)秀的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】補(bǔ)全下列解題過程:
如圖,OD是∠AOC的平分線,且∠BOC-∠AOB=40°,若∠AOC=120°,求∠BOD的度數(shù).
解:∵OD是∠AOC的平分線,∠AOC=120°
∴∠DOC=∠_______=______°.
∵∠BOC+∠_____=120°,∠BOC-∠AOB=40°
∴∠BOC=80°
∴∠BOD=∠BOC-∠______=______°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC,垂足為點(diǎn)F,連接DF,下面四個結(jié)論:①CF=2AF;②tan∠CAD= ;
③DF=DC;④△AEF∽△CAB;⑤ S四邊形CDEF=S△ABF ,其中正確的結(jié)論有( )
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知α是銳角,且點(diǎn)A( ,a),B(sin30°+cos30°,b),C(﹣m2+2m﹣2,c)都在二次函數(shù)y=﹣x2+x+3的圖象上,那么a、b、c的大小關(guān)系是( )
A.a<b<c
B.a<c<b
C.b<c<a
D.c<b<a
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中錯誤的是( )
A.平行四邊形的對角線互相平分
B.有兩對鄰角互補(bǔ)的四邊形為平行四邊形
C.對角線互相平分的四邊形是平行四邊形
D.一組對邊平行,一組對角相等的四邊形是平行四邊形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com