【題目】如圖,將邊長(zhǎng)為的正三角形紙片按如下順序進(jìn)行兩次折疊,展開(kāi)后,得折痕, (如圖①),點(diǎn)為其交點(diǎn).
()探求到的數(shù)量關(guān)系,并說(shuō)明理由.
()如圖②,若, 分別為, 上的動(dòng)點(diǎn).
①當(dāng)的長(zhǎng)度取得最小值時(shí),求的長(zhǎng)度.
②如圖③,若點(diǎn)在線段上, ,則的最小值__________.
【答案】();()①;②最小值為.
【解析】試題分析:(1)根據(jù)等邊三角形的性質(zhì)得到∠BAO=∠ABO=∠OBD=30°,得到AO=OB,根據(jù)直角三角形的性質(zhì)即可得到結(jié)論;
(2)如圖②,作點(diǎn)D關(guān)于BE的對(duì)稱點(diǎn)D′,過(guò)D′作D′N⊥BC于N交BE于P,則此時(shí)PN+PD的長(zhǎng)度取得最小值,根據(jù)線段垂直平分線的想知道的BD=BD′,推出△BDD′是等邊三角形,得到BN的長(zhǎng),于是得到結(jié)論;
(3)如圖③,作Q關(guān)于BC的對(duì)稱點(diǎn)Q′,作D關(guān)于BE的對(duì)稱點(diǎn)D′,連接Q′D′,即為QN+NP+PD的最小值.根據(jù)軸對(duì)稱的定義得到∠Q′BN=∠QBN=30°,∠QBQ′=60°,得到△BQQ′為等邊三角形,△BDD′為等邊三角形,解直角三角形即可得到結(jié)論.
試題解析:解:(1)AO=2OD.理由:∵△ABC是等邊三角形,∴∠BAO=∠ABO=∠OBD=30°,∴AO=OB.∵BD=CD,∴AD⊥BC,∴∠BDO=90°,∴OB=2OD,∴OA=2OD;
(2)如圖②,作點(diǎn)D關(guān)于BE的對(duì)稱點(diǎn)D′,過(guò)D′作D′N⊥BC于N交BE于P,則此時(shí)PN+PD的長(zhǎng)度取得最小值.∵BE垂直平分DD′,∴BD=BD′.∵∠ABC=60°,∴△BDD′是等邊三角形,∴BN=BD=.∵∠PBN=30°,∴,∴PB=;
(3)如圖③,作Q關(guān)于BC的對(duì)稱點(diǎn)Q′,作D關(guān)于BE的對(duì)稱點(diǎn)D′,連接Q′D′,即為QN+NP+PD的最小值.
根據(jù)軸對(duì)稱的定義可知:∠Q′BN=∠QBN=30°,∠QBQ′=60°,∴△BQQ′為等邊三角形,△BDD′為等邊三角形,∴∠D′BQ′=90°.在Rt△D′BQ′中,D′Q′==,∴QN+NP+PD的最小值=,故答案為: .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB∥CD,
求:(1)在圖(1)中∠B+∠D=?(2)在圖(2)中∠B+∠E1+∠D=?(3)在圖(3)中∠B+∠E1+∠E2+…+∠En﹣1+∠En+∠D=?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,交BF于C.
(1)尺規(guī)作圖:過(guò)點(diǎn)B作AC的垂線,交AC于O,交AE于D,(保留作圖痕跡,不寫(xiě)作法);
(2)在(1)的圖形中,找出兩條相等的線段,并予以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),再求值:
(1)(1+a)(1-a)+(a-2)2,其中a=;
(2)(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=-3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩車(chē)分別從A,B兩地同時(shí)出發(fā)相向而行.并以各自的速度勻速行駛,甲車(chē)途徑C地時(shí)休息一小時(shí),然后按原速度繼續(xù)前進(jìn)到達(dá)B地;乙車(chē)從B地直接到達(dá)A地,如圖是甲、乙兩車(chē)和B地的距離y(千米)與甲車(chē)出發(fā)時(shí)間x(小時(shí))的函數(shù)圖象.
(1)直接寫(xiě)出a,m,n的值;
(2)求出甲車(chē)與B地的距離y(千米)與甲車(chē)出發(fā)時(shí)間x(小時(shí))的函數(shù)關(guān)系式(寫(xiě)出自變量x的取值范圍);
(3)當(dāng)兩車(chē)相距120千米時(shí),乙車(chē)行駛了多長(zhǎng)時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀下面的文字,然后解答問(wèn)題.
大家知道是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫(xiě)出來(lái),于是小明用﹣1表示的小數(shù)部分,你同意小明的表示方法嗎?事實(shí)上,小明的表示方法是有道理的,因?yàn)?/span>的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分.
由此我們還可以得到一個(gè)真命題:如果=x+y,其中x是整數(shù),且0<y<1,那么x=1,y=﹣1.
請(qǐng)解答下列問(wèn)題:
(1)如果=a+b,其中a是整數(shù),且0<b<1,那么a= ,b= ;
(2)已知2+=m+n,其中m是整數(shù),且0<n<1,求|m﹣n|的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】高致病性禽流感是比SARS傳染速度更快的傳染。疄榉乐骨萘鞲新,政府規(guī)定:離疫點(diǎn)3km范圍內(nèi)為撲殺區(qū);離疫點(diǎn)3km~5km范圍內(nèi)為免疫區(qū),對(duì)撲殺區(qū)與免疫區(qū)內(nèi)的村莊、道路實(shí)行全封閉管理.現(xiàn)有一條筆直的公路AB通過(guò)禽流感病區(qū),如圖,在撲殺區(qū)內(nèi)公路CD長(zhǎng)為4km.
(1)請(qǐng)用直尺和圓規(guī)找出疫點(diǎn)O(不寫(xiě)作法,保留作圖痕跡);
(2)求這條公路在免疫區(qū)內(nèi)有多少千米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com