【題目】如圖,在平面直角坐標系中,已知C3,4),以點C為圓心的圓與y軸相切.點ABx軸上,且OA=OB.點P為⊙C上的動點,∠APB=90°,則AB長度的最小值為(  )

A.4B.3C.7D.8

【答案】A

【解析】

連接OC,交⊙C上一點P,以O為圓心,以OP為半徑作⊙O,交x軸于A、B,此時AB的長度最小,根據(jù)勾股定理和題意求得OP=2,則AB的最小長度為4

解:如圖,連接OC,交⊙C上一點P,以O為圓心,以OP為半徑作⊙O,交x軸于A、B,此時AB的長度最小,

C3,4),

OC==5,

∵以點C為圓心的圓與y軸相切.

∴⊙C的半徑為3

OP=OC3=2,

OP=OA=OB=2,

AB是直徑,

∴∠APB=90°,

AB長度的最小值為4

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形紙片中,,,折疊紙片使點落在邊上的處,拆痕為.過點,連接

1)求證:四邊形為菱形;

2)當點邊上移動時,折痕的端點、也隨之移動;

①當點與點重合時(如圖2),求菱形的邊長;

②若限定分別在邊、上移動,求的內(nèi)切圓半徑的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為拓寬學生視野,促進書本知識和生活經(jīng)驗的深度融合,我市某中學決定組織部分班級開展研學旅行活動,在參加此次活動的師生中,若每位老師帶名學生,還剩名學生沒人帶;若每位老師帶名學生,則有一位老師少帶名學生.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如下表所示.

甲種客車

已和客車

載客量(人/量)

租金(元/輛)

學校計劃此次研學旅行活動的租車總費用不超過元,為了安全,每輛客車上至少要有名老師.

1)參加此次研學旅行活動的老師和學生各有多少人?

2)既要保證所有師生都有車坐,又要保證每輛客車上至少要有名老師,可求得租用客車總數(shù)為______輛.

3)在(2)的條件下,你能得出哪幾種不同的租車方案?其中哪種租車方案最省錢?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD是一塊邊長為4米的正方形苗圃,園林部門擬將其改造為矩形AEFG的形狀,其中點EAB邊上,點GAD的延長線上,DG= 2BE.設BE的長為x米,改造后苗圃AEFG的面積為y平方米.

1)求yx之間的函數(shù)關系式(不需寫自變量的取值范圍);

2)根據(jù)改造方案,改造后的矩形苗圃AEFG的面積與原正方形苗圃ABCD的面積相等,請問此時BE的長為多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形網(wǎng)格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標系內(nèi),△ABC的三個頂點坐標分別為A(1,4),B(1,1),C(3,1).

(1)畫出△ABC關于x軸對稱的△A1B1C1

(2)畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后的△A2B2C2;

(3)在(2)的條件下,求線段BC掃過的面積(結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△OAB中,頂點O0,0),A(﹣23),B23),將△OAB與正方形ABCD組成的圖形繞點O順時針旋轉(zhuǎn),每次旋轉(zhuǎn)90°,則第2020次旋轉(zhuǎn)結束時,點D的坐標為( 。

A.(﹣27B.7,2C.2,﹣7D.(﹣7,﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,拋物線y = ax2+ bx + c經(jīng)過AB、C三點,已知點A-3,0),B0,3),C10).

1)求此拋物線的解析式;

2)點P是直線AB上方的拋物線上一動點,(不與點A、B重合),過點Px軸的垂線,垂足為F,交直線AB于點E,作PDAB于點D.動點P在什么位置時,PDE的周長最大,求出此時P點的坐標;

3)在直線x = -2上是否存在點M,使得∠MAC = 2MCA,若存在,求出M點坐標.若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道:四邊形具有不穩(wěn)定性.如圖,在平面直角坐標系中,將邊長為4的菱形的邊固定在軸上,開始時,現(xiàn)把菱形向左推,使點落在軸正半軸上的點處,則下列說法中錯誤的是(

A.的坐標為B.

C.移動的路徑長度為4個單位長度D.垂直平分

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線與直線交于點,且點的橫坐標為

1)請用的代數(shù)式表示;

2)點在直線上,點的橫坐標為,點的坐標為

①若拋物線過點,求該拋物線的解析式;

②若拋物線與線段恰有一個交點,直接寫出的取值范圍.

查看答案和解析>>

同步練習冊答案