已知拋物線y=x2+bx-a2
(1)請(qǐng)你選定a、b適當(dāng)?shù)闹担缓髮?xiě)出這條拋物線與坐標(biāo)軸的三個(gè)交點(diǎn),并畫(huà)出過(guò)三個(gè)交點(diǎn)的圓;
(2)試討論此拋物線與坐標(biāo)軸交點(diǎn)分別是1個(gè),2個(gè),3個(gè)時(shí),a、b的取值范圍,并且求出交點(diǎn)坐標(biāo).
(1)∵這條拋物線與坐標(biāo)軸的三個(gè)交點(diǎn),
∴這條拋物線與x軸的兩個(gè)交點(diǎn),
∴△=b2+4a2>0且a2≠0,
∴設(shè)b=2,a=
6
,
∴y=x2+2x-6,
∴這條拋物線與坐標(biāo)軸的三個(gè)交點(diǎn)為(2,0),(-4,0),(0,-6).
如圖:

(2)①當(dāng)這條拋物線與坐標(biāo)軸的有一個(gè)交點(diǎn),
∴這條拋物線與坐標(biāo)軸的交點(diǎn)是原點(diǎn)(0,0),
則a=0,b=0.
②當(dāng)這條拋物線與坐標(biāo)軸的有兩個(gè)交點(diǎn)時(shí),
拋物線過(guò)原點(diǎn),則此時(shí)a=0,b≠0,
∴y=x2+bx,
交點(diǎn)坐標(biāo)為(0,0),(-b,0).
③當(dāng)這條拋物線與坐標(biāo)軸的有三個(gè)交點(diǎn)時(shí),
這條拋物線與x軸交于兩點(diǎn),且不過(guò)原點(diǎn),
∴△=b2+4a2>0,
∴a≠0,b為任意實(shí)數(shù),
交點(diǎn)坐標(biāo)為(
-b±
4a2+b2
2
,0),(0,-a2).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:拋物線y=ax2+bx+4的對(duì)稱軸為x=-1,且與x軸相交于點(diǎn)A、B,與y軸相交于點(diǎn)C,其中點(diǎn)A的坐標(biāo)為(-3,0),
(1)求該拋物線的解析式;
(2)若該拋物線的頂點(diǎn)為D,求△ACD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,三角形ABC是以BC為底邊的等腰三角形,點(diǎn)A、C分別是一次函數(shù)y=-
3
4
x+3的圖象與y軸、x軸的交點(diǎn),點(diǎn)B在二次函數(shù)y=
1
8
x2+bx+c
的圖象上,且該二次函數(shù)圖象上存在一點(diǎn)D使四邊形ABCD能構(gòu)成平行四邊形.
(1)試求b,c的值,并寫(xiě)出該二次函數(shù)表達(dá)式;
(2)動(dòng)點(diǎn)P從A到D,同時(shí)動(dòng)點(diǎn)Q從C到A都以每秒1個(gè)單位的速度運(yùn)動(dòng),問(wèn):
①當(dāng)P運(yùn)動(dòng)到何處時(shí),有PQ⊥AC?
②當(dāng)P運(yùn)動(dòng)到何處時(shí),四邊形PDCQ的面積最?此時(shí)四邊形PDCQ的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖在平面直角坐標(biāo)系中,將一塊等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,且點(diǎn)A(0,2),點(diǎn)C(-1,0),如圖所示點(diǎn)B在拋物線y=ax2+ax-2上.
(1)求點(diǎn)B的坐標(biāo);
(2)求拋物線的解析式;
(3)將三角板ABC繞頂點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°到達(dá)△AB′C′的位置,請(qǐng)寫(xiě)出點(diǎn)B′坐標(biāo)______,點(diǎn)C′坐標(biāo)______;判斷點(diǎn)B′______,C′______(填“在”或“不”)在(2)中的拋物線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=(1-m)x2+4x-3開(kāi)口向下,與x軸交于A(x1,0)和B(x2,0)兩點(diǎn),其中x1<x2
(1)求m的取值范圍;
(2)若x12+x22=10,求拋物線的解析式,并在給出的直角坐標(biāo)系中畫(huà)出這條拋物線;
(3)設(shè)這條拋物線的頂點(diǎn)為C,延長(zhǎng)CA交y軸于點(diǎn)D.在y軸上是否存在點(diǎn)P,使以P、B、O為頂點(diǎn)的三角形與△BCD相似?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸相交于點(diǎn)A(-2,0)和點(diǎn)B,與y軸相交于點(diǎn)C,頂點(diǎn)D(1,-
9
2

(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)求四邊形ACDB的面積;
(3)若平移(1)中的拋物線,使平移后的拋物線與坐標(biāo)軸僅有兩個(gè)交點(diǎn),請(qǐng)直接寫(xiě)出一個(gè)平移后的拋物線的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一座隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)為8m,寬為2m,隧道最高點(diǎn)P位于AB的中央且距地面6m,建立如圖所示的坐標(biāo)系.
(1)求拋物線的表達(dá)式;
(2)一輛貨車高4m,寬2m,能否從該隧道內(nèi)通過(guò),為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=x2-2x-3與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.
(1)點(diǎn)A的坐標(biāo)為_(kāi)_____,點(diǎn)B的坐標(biāo)為_(kāi)_____,點(diǎn)C的坐標(biāo)為_(kāi)_____.
(2)設(shè)拋物線y=x2-2x-3的頂點(diǎn)為M,求四邊形ABMC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1所示,一張三角形紙片ABC,∠ACB=90°,AC=8,BC=6.沿斜邊AB的中線CD把這張紙片剪成△AC1D1和△BC2D2兩個(gè)三角形(如圖所示).將紙片△AC1D1沿直線D2B(AB)方向平移(點(diǎn)A,D1,D2,B始終在同一直線上),當(dāng)點(diǎn)D1于點(diǎn)B重合時(shí),停止平移.在平移過(guò)程中,C1D1與BC2交于點(diǎn)E,AC1與C2D2、BC2分別交于點(diǎn)F、P.
(1)當(dāng)△AC1D1平移到如圖3所示的位置時(shí),猜想圖中的D1E與D2F的數(shù)量關(guān)系,并證明你的猜想;
(2)設(shè)平移距離D2D1為x,△AC1D1與△BC2D2重疊部分面積為y,請(qǐng)寫(xiě)出y與x的函數(shù)關(guān)系式,以及自變量的取值范圍;
(3)對(duì)于(2)中的結(jié)論是否存在這樣的x的值使得y=
1
4
S△ABC;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案