【題目】如圖,在坡度的斜坡AB上立有一電線桿EF,工程師在點A處測得E的仰角為,沿斜坡前進20米到達B,此時測得點E的仰角為,現(xiàn)要在斜坡AB上找一點P,在P處安裝一根拉繩PE來固定電線桿,以使EF保持豎直,為使拉繩PE最短,則FP的長度約為參考數(shù)據(jù):

A. B. C. D.

【答案】C

【解析】BD∥AC,如圖所示,

∵斜坡AB的坡度i=1: ,

∴tan∠BAC=1:=,,

∴∠BAC=30°,

∵∠EAC=60°,

∴∠EAF=30°,

∵要使點EAB的距離最短,

∴EP⊥AB于點P,

∴tan∠EAP=

∴AP= ,

∵∠EBD=15°,BD∥AC,

∴∠DBA=∠BAC=30°,

∴∠EBP=45°,

∴EP=PB,

∵AP+PB=AB=20米,

+EP=20,

解得,EP=10-10,

又∵EF∥BC,∠B=90°-∠BAC=60°,

∴∠EFP=60°,

∵tan∠EFP= ,

tan60°= ,

解得,PF≈4.2米,

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】目前由重慶市教育委員會,渝北區(qū)人們政府主辦的陽光下成長重慶市第八屆中小學生藝術展演活動落下帷幕,重慶一中學生舞蹈團、管樂團、民樂團、聲樂團、話劇團等五大藝術團均榮獲藝術表演類節(jié)目一等獎,重慶一中獲優(yōu)秀組織獎,重慶一中老師李珊獲先進個人獎,其中重慶一中舞蹈團將代表重慶市參加明年的全國集中展演比賽,若以下兩個統(tǒng)計圖統(tǒng)計了舞蹈組各代表隊的得分情況:

1m   ,在扇形統(tǒng)計圖中分數(shù)為7的圓心角度數(shù)為   度.

2)補全條形統(tǒng)計圖,各組得分的中位數(shù)是   分,眾數(shù)是   分.

3)若舞蹈組獲得一等獎的隊伍有2組,已知主辦方各組的獎項個數(shù)是按相同比例設置的,若參加該展演活動的總隊伍數(shù)共有120組,那么該展演活動共產(chǎn)生了多少個一等獎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B、C兩點的俯角分別為45°、35°.已知大橋BC與地面在同一水平面上,其長度為100m,請求出熱氣球離地面的高度.

(結果保留整數(shù),參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人相約元旦登山,甲、乙兩人距地面的高度y(m)與登山時間x(min)之間的函數(shù)圖像如圖所示,根據(jù)圖像所提供的信息解答下列問題:

1t= min.

2)若乙提速后,乙登山的上升速度是甲登山的上升速度3倍,

則甲登山的的上升速度是 m/min;

請求出甲登山過程中,距地面的高度y(m)與登山時間x(min)之間的函數(shù)關系式.

當甲、乙兩人距地面高度差為70m時,求x的值(直接寫出滿足條件的x值).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.

(1)求證:ΔABC△DEF;

(2)若∠A=55°,B=88°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是將菱形ABCD以點O為中心按順時針方向分別旋轉90°,180°,270°后形成的圖形。若,AB=2,則圖中陰影部分的面積為

A. 124 B. 5 C. 12-4 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AB=13,BC=50,BC邊上的高為12.點P從點B出發(fā),沿B﹣A﹣D﹣A運動,沿B﹣A運動時的速度為每秒13個單位長度,沿A﹣D﹣A運動時的速度為每秒8個單位長度.點Q從點 B出發(fā)沿BC方向運動,速度為每秒5個單位長度.P、Q兩點同時出發(fā),當點Q到達點C時,P、Q兩點同時停止運動.設點P的運動時間為t(秒).連結PQ.

(1)當點P沿A﹣D﹣A運動時,求AP的長(用含t的代數(shù)式表示).

(2)連結AQ,在點P沿B﹣A﹣D運動過程中,當點P與點B、點A不重合時,記APQ的面積為S.求S與t之間的函數(shù)關系式.

(3)過點Q作QRAB,交AD于點R,連結BR,如圖.在點P沿B﹣A﹣D運動過程中,當線段PQ掃過的圖形(陰影部分)被線段BR分成面積相等的兩部分時t的值.

(4)設點C、D關于直線PQ的對稱點分別為C′、D′,直接寫出C′D′BC時t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點AD為圓心,以大于的長為半徑在AD的兩側作弧,交于兩點M、N;第二步,連結MN,分別交AB、AC于點E、F;第三步,連結DE、DF..若BD=6,AF=4,CD=3,則BE的長是( )

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,以對角線BD為一邊構造一個矩形BDEF,使得另一邊EF過原矩形的頂點C.

(1)設Rt△CBD的面積為S1,Rt△BFC的面積為S2,Rt△DCE的面積為S3,則S1__ __S2+S3;(填“>”“=”或“<”)

(2)寫出圖中的三對相似三角形,并選擇其中一對進行證明.

查看答案和解析>>

同步練習冊答案