【題目】四邊形ABCD中,BD是對角線,∠ABC=90 °,tan∠ABD= ,AB=20,BC=10,AD=13,則線段CD=________.
【答案】17或.
【解析】
作AH⊥BD于H,CG⊥BD于G,根據(jù)正切的定義分別求出AH、BH,根據(jù)勾股定理求出HD,得到BD,根據(jù)勾股定理計算即可.
當∠ADB為銳角時,作AH⊥BD于H,CG⊥BD于G,
∵tan∠ABD= ,
∴ =,
設AH=3x,則BH=4x,
由勾股定理得,(3x)2+(4x)2=202,
解得,x=4,
則AH=12,BH=16,
在Rt△AHD中,HD==5,
∴BD=BH+HD=21,
∵∠ABD+∠CBD=90°,∠BCH+∠CBD=90°,
∴∠ABD=∠CBH,
∴ =,又BC=10,
∴BG=6,CG=8,
∴DG=BD﹣BG=15,
∴CD==17,
當∠ADB為鈍角時,CD′==,
故答案為:17或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC內接于⊙O,點D在OC的延長線上,∠B=∠CAD=30°.
(1)AD是⊙O的切線嗎?為什么?
(2)若OD⊥AB,BC=5,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,我漁政310船在南海海面上沿正東方向勻速航行,在A地觀測到我漁船C在東北方向上的我國某傳統(tǒng)漁場.若漁政310船航向不變,航行半小時后到達B處,此時觀測到我漁船C在北偏東30°方向上.問漁政310船再航行多久,離我漁船C的距離最近?(假設我漁船C捕魚時移動距離忽略不計,結果不取近似值.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)y=ax2+bx+c的圖象經過點A(﹣2,0),B(0, ),C(4,0),其對稱軸與x軸交于點D,若P為y軸上的一個動點,連接PD,PB+PD的最小值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請從以下兩個小題中任選一個作答,若多選,則按所選的第一題計分.
A.如圖,DE為△ABC的中位線,點F為DE上一點,且∠AFB=90°,若AB=8,BC=10,則EF的長為________.
B.小智同學在距大雁塔塔底水平距離為138米處,看塔頂?shù)难鼋菫?/span>24.8(不考慮身高因素),則大雁塔市約為________米.(結果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某手機銷售商從廠家購進了兩種型號的手機,已知一臺型手機的進價比一臺型手機的進價多300元,用7500元購進型手機和用6000元購進型手機的數(shù)量相同.
(1)求一臺型手機和一臺型手機的進價各是多少元?
(2)在銷售過程中,型手機因為性價比高,更受消費者的歡迎.為了增大型手機的銷量,該銷售商決定對型手機進行降價銷售.經調查,當型手機的售價為1800元時,每天可賣出4臺,在此基礎上,售價每降低50元,每天將多售出1臺.如果每天銷售型手機的利潤為3200元,請問該手機銷售商應將型手機的售價降低多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,MN表示某飲水工程的一段設計路線,從M到N的走向為南偏東30°,在M的南偏東60°的方向上有一點A,以點A為圓心.以500m為半徑的圓形區(qū)域為居民區(qū),取MN上另一點B,測得BA的方向為南偏東75°,已知MB=400m.通過計算回答,如果不改變方向,輸水路線是否會穿過該居民區(qū)?(≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖△ABC,AB=AC,將△ABC繞點A順時針旋轉得到△AEF,連結BE、CF相交于點D.
(1)求證:BE=CF;
(2)已知四邊形ACDE是菱形,∠BAC=45°,AB=AC=1.
①求旋轉角 ∠BAE的度數(shù);
②求BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com