精英家教網 > 初中數學 > 題目詳情
如圖,∠B=30°,若AB∥CD,CB平分∠ACD,則∠ACD=    度.
【答案】分析:根據AB∥CD,可得∠BCD=∠B=30°,然后根據CB平分∠ACD,可得∠ACD=2∠BCD=60°.
解答:解:∵AB∥CD,∠B=30°,
∴∠BCD=∠B=30°,
∵CB平分∠ACD,
∴∠ACD=2∠BCD=60°.
故答案為:60.
點評:本題考查了平行線的性質和角平分線的性質,掌握平行線的性質:兩直線平行,內錯角相等是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

18、如圖,∠PAQ=30°,若MP和NQ分別垂直平分AB和AC,則∠BAC的度數是
105
°.

查看答案和解析>>

科目:初中數學 來源: 題型:

6、如圖,∠AOB=30°,∠AOB內有一定點P,且OP=10.在OA上有一點Q,OB上有一點R.若△PQR周長最小,則最小周長是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•海南)如圖,∠APB=30°,圓心在PB上的⊙O的半徑為1cm,OP=3cm,若⊙O沿BP方向平移,當⊙O與PA相切時,圓心O平移的距離為
1或5
1或5
cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,∠A=30°,∠D=45°,CE=2,CE⊥AD,則△ADC面積=
2
3
+2
2
3
+2

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,含30°的兩塊相同三角板ABC和DEF都是斜邊為4cm的直角三角形,且A、E、B、D(B、E不重合)都在同一直線上,連接CE、BF.
(1)求證:四邊形CEFB是平行四邊形;
(2)當點A、E相距3cm時,將△ABC沿著AD的方向以每秒1cm的速度運動,設△ABC運動時間為t秒,請問:當t為何值時,四邊形CEFB是菱形?說明你的理由;
(3)在(2)中再猜想:四邊形CEFB有可能是矩形嗎?若能,直接寫出t的值及此矩形的面積;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案