【題目】如圖,在中,,過重心、的垂線,垂足分別為、,則四邊形的面積與的面積之比為(

A.B.C.D.

【答案】C

【解析】

連接AG并延長交BC于點(diǎn)F,根據(jù)G為重心可知,AG=2FGCF=BF,再證明△ADG∽△GEF,得出,設(shè)矩形CDGE中,DG=a,EG=b,用含a,b的式子將AC,BC的長表示出來,再列式化簡即可求出結(jié)果.

解:連接AG并延長交BC于點(diǎn)F,根據(jù)G為重心可知,AG=2FG,CF=BF

易得四邊形GDCE為矩形,

DGBCDG=CD=EG=CE,∠CDG=CEG=90°,

∴∠AGD=AFC,∠ADG=GEF=90°,

∴△ADG∽△GEF,

設(shè)矩形CDGE中,DG=a,EG=b,

AC=AD+CD=2EG+EG=3b,

BC=2CF=2(CE+EF)=2(DG+)=3a,

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種文具,進(jìn)價為 5(元/件),售價為6(元/件)時,當(dāng)天的銷售量為100件,在銷售過程中發(fā)現(xiàn):售價每上漲0.5元,當(dāng)天的銷售量就減少5件,設(shè)當(dāng)天銷售單價統(tǒng)一為(元/件)(,且是按0.5元的倍數(shù)上漲),當(dāng)天銷售利潤為元.

1)求的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);

2)要使當(dāng)天銷售利潤不低于240元,求當(dāng)天銷售單價的范圍;

3)若每件文具的利潤不超過60%,要使當(dāng)天獲得利潤最大,每件文具售價為多少元?并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】知識背景:

當(dāng)a0x0時,因?yàn)?/span>,所以x20,從而(當(dāng),即x時取等號).

設(shè)函數(shù)yx+x0a0),由上述結(jié)論可知:當(dāng)x時,該函數(shù)有最小值2

應(yīng)用舉例

已知函數(shù)為y1xx0)與函數(shù)y2x0),則當(dāng)x時,y1+y2x+有最小值為2

解決問題

1)已知函數(shù)為y1x1x1)與函數(shù)y2=(x12+9x1),當(dāng)x取何值時,有最小值?最小值是多少?

2)已知某設(shè)備租賃使用成本包含以下三部分:一是設(shè)備的安裝調(diào)試費(fèi)用,共490元;二是設(shè)備的租賃使用費(fèi)用,每天200元;三是設(shè)備的折舊費(fèi)用,它與使用天數(shù)的平方成正比,比例系數(shù)為0001.若設(shè)該設(shè)備的租賃使用天數(shù)為x天,則當(dāng)x取何值時,該設(shè)備平均每天的租賃使用成本最低?最低是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y1=﹣x2+x+2x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C,直線l是拋物線的對稱軸,一次函數(shù)y2kx+b經(jīng)過B、C兩點(diǎn),連接AC

1ABC   三角形;

2)設(shè)點(diǎn)P是直線l上的一個動點(diǎn),當(dāng)PAC的周長最小時,求點(diǎn)P的坐標(biāo);

3)結(jié)合圖象,寫出滿足y1y2時,x的取值范圍   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】太陽能光伏建筑是現(xiàn)代綠色環(huán)保建筑之一,老張準(zhǔn)備把自家屋頂改建成光伏瓦面,改建前屋頂截面ABC如圖2所示,BC=10米,∠ABC=ACB=36°,改建后頂點(diǎn)DBA的延長線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結(jié)果精確到0.1米)

(參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由24個小正方形組成的網(wǎng)格圖,每一個正方形的頂點(diǎn)都稱為格點(diǎn),的三個頂點(diǎn)都是格點(diǎn).請按要求完成下列作圖,每個小題只需作出一個符合條件的圖形.

1)在圖1網(wǎng)格中找格點(diǎn),作直線,使直線平分的面積;

2)在圖2網(wǎng)格中找格點(diǎn),作直線,使直線的面積分成兩部分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸正半軸相交于A、B兩點(diǎn),軸相交于點(diǎn)C,對稱軸為直線OA=OC,則下列結(jié)論:①④關(guān)于的方程有一個根為其中正確的結(jié)論個數(shù)有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=4.4cm,點(diǎn)DAC邊的中點(diǎn),點(diǎn)P是邊AB上的一個動點(diǎn),過點(diǎn)P作射線BC的垂線,垂足為點(diǎn)E,連接DE.設(shè)PA=xcm,ED=ycm,小石根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小石的探究過程,請補(bǔ)充完整:

1)通過取點(diǎn)、畫圖、測量,得到了xy的幾組值,如表:(說明:補(bǔ)全表格時相關(guān)數(shù)據(jù)保留一位小數(shù))

2)建立平面直角坐標(biāo)系,描出已補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;

3)結(jié)合畫出的函數(shù)圖象,解決問題:點(diǎn)EBC邊的中點(diǎn)時,PA的長度約為   cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),過點(diǎn)O的拋物線yax27axx軸正半軸交于點(diǎn)A,點(diǎn)D為第三象限拋物線上一點(diǎn),ADy軸于點(diǎn)B,OA2OB,點(diǎn)D縱坐標(biāo)為﹣4

1)如圖1,求拋物線的解析式;

2)如圖2,點(diǎn)P為第一象限拋物線上一點(diǎn),過點(diǎn)PPEx軸,垂足為E,PDy軸于點(diǎn)C,連接CE,求證:CEAD

3)如圖3,在(2)的條件下,將線段EC繞點(diǎn)E順時針旋轉(zhuǎn)90°,使點(diǎn)C恰好落在拋物線的點(diǎn)F處,連接OP,點(diǎn)Q為線段OP上一點(diǎn),若∠FQC135°,求點(diǎn)Q坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案