【題目】如圖,半圓O的直徑AB=10cm,D為 上一點,C為 上一點,把弓形沿直線AD翻折,C和直徑AB上的點C′重合,若AC=6cm,則AD的長為

【答案】4 cm
【解析】解:連接OD,OC,作DE⊥AB于E,OF⊥AC于F,

∵∠CAD=∠BAD(折疊的性質),
= ,
∴點D是 的中點.
∴∠DOB=∠OAC=2∠BAD,
∴△AOF≌△OED,
∴OE=AF= AC= AC'=3cm,
在Rt△DOE中,DE= =4cm,
在Rt△ADE中,AD= =4 cm.
故答案是:4 cm.
【考點精析】解答此題的關鍵在于理解翻折變換(折疊問題)的相關知識,掌握折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小梅家的陽臺上放置了一個曬衣架如圖1,圖2是曬衣架的側面示意圖,A,B兩點立于地面,將曬衣架穩(wěn)固張開,測得張角∠AOB=62°,立桿OA=OB=140cm,小梅的連衣裙穿在衣架后的總長度為122cm,問將這件連衣裙垂掛在曬衣架上是否會拖落到地面?請通過計算說明理由(參考數(shù)據(jù):sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,新定義:直線l1、l、l2 , 相交于點O,長為m的線段AB在直線l2上,點P是直線l1上一點,點Q是直線l上一點.若∠AQB=2∠APB,則我們稱點P是點Q的伴侶點;
(1)如圖1,直線l2、l的夾角為30°,線段AB在點O右側,且OA=1,m=2,若要使得∠APB=45°且滿足點P是點Q的伴侶點,則OQ=

(2)如圖2,若直線l1、l2的夾角為60°,且m=3,若要使得∠APB=30°,線段AB在直線l2上左右移動.
①當OA的長為多少時,符合條件的伴侶點P有且只有一個?請說明理由;
②是否存在符合條件的伴侶點P有三個的情況?若存在,請直接寫出OA長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,以AB為直徑作⊙O,分別交AC,BC于點D,E.

(1)求證:BE=CE.
(2)求∠BAC=40°時,∠ADE的度數(shù).
(3)過點E作⊙O的切線,交AB的延長線于點F,當AO=EF=2時,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,AD=6,點E、F分別在邊CD、AB上.

(1)若DE=BF,求證:四邊形AFCE是平行四邊形;
(2)若四邊形AFCE是菱形,求菱形AFCE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC為⊙O的切線,切點為B,OC平行于AD,OA=2.

(1)求證:CD是⊙O的切線;
(2)若AD+OC=9,求CD的長.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】成都地鐵規(guī)劃到2020年將通車13條線路,近幾年正是成都地鐵加緊建設和密集開通的幾年,市場對建材的需求量有所提高,根據(jù)市場調查分析可預測:投資水泥生產銷售后所獲得的利潤y1(萬元)與投資資金量x(萬元)滿足正比例關系y1=20x;投資鋼材生產銷售的后所獲得的利潤y2(萬元)與投資資金量x(萬元)滿足函數(shù)關系的圖象如圖所示(其中OA是拋物線的一部分,A為拋物線的頂點,AB∥x軸).

(1)直接寫出當0<x<30及x>30時,y2與x之間的函數(shù)關系式;
(2)某建材經銷公司計劃投資100萬元用于生產銷售水泥和鋼材兩種材料,若設投資鋼材部分的資金量為t(萬元),生長銷售完這兩種材料后獲得的總利潤為W(萬元).
①求W與t之間的函數(shù)關系式;
②若要求投資鋼材部分的資金量不得少于45萬元,那么當投資鋼材部分的資金量為多少萬元時,獲得的總利潤最大?最大總利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學了統(tǒng)計知識后,小剛就本班同學上學“喜歡的出行方式”進行了一次調查.圖(1)和圖(2)是他根據(jù)采集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息解答以下問題:

(1)補全條形統(tǒng)計圖,并計算出“騎車”部分所對應的圓心角的度數(shù);
(2)如果全年級共600名同學,請估算全年級步行上學的學生人數(shù);
(3)若由3名“喜歡乘車”的學生,1名“喜歡步行”的學生,1名“喜歡騎車”的學生組隊參加一項活動,欲從中選出2人擔任組長(不分正副),列出所有可能的情況,并求出2人都是“喜歡乘車”的學生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】杰瑞公司成立之初投資1500萬元購買新生產線生產新產品,此外,生產每件該產品還需要成本60元.按規(guī)定,該產品售價不得低于100元/件且不得超過180元/件,該產品銷售量y(萬件)與產品售價x(元)之間的函數(shù)關系如圖所示.

(1)求y與x之間的函數(shù)關系式,并寫出x的取值范圍;
(2)第一年公司是盈利還是虧損?求出當盈利最大或者虧損最小時的產品售價;
(3)在(2)的前提下,即在第一年盈利最大或者虧損最小時,第二年公司重新確定產品售價,能否使兩年共盈利達1340萬元?若能,求出第二年產品售價;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案