【題目】如圖,在ABCABD中,CD90°,若利用“HL”證明ABC≌△ABD,則需要添加的條件是________________

【答案】ACAD BCBD

【解析】

本題要判定ABC≌△ABD,已知∠C=D=90°,AB=AB,具備了一組邊、一組角相等,故添加∠CAB=DAB或∠CBA=DBA,BD=BCAD=AC后可分別根據(jù)AAS、HL判定三角形全等.

解:添加∠CAB=DAB或∠CBA=DBA,BD=BCAD=AC

∵∠C=D,∠CAB=DAB(∠CBA=DBA),AB=AB

∴△ABC≌△ABDAAS);

∵∠C=D=90°AB=ABAD=AC),BD=BC

∴△ABC≌△ABDHL).

故答案為:BC=BDAC=AD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)已知a,b滿足 +|b-1|=0,求b-a的算術(shù)平方根。

2)如果一個(gè)正數(shù)m的兩個(gè)平方根分別是2a3a9,求2m2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的方程mx2﹣4x﹣m+5=0,有以下說(shuō)法:
①當(dāng)m=0時(shí),方程只有一個(gè)實(shí)數(shù)根;②當(dāng)m=1時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;③當(dāng)m=﹣1時(shí),方程沒(méi)有實(shí)數(shù)根.則其中正確的是( )
A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)軸上有A、B、C三個(gè)點(diǎn)對(duì)應(yīng)的數(shù)分別是a、b、c,且滿足|a+24|+|b+10|+c-102=0;動(dòng)點(diǎn)PA出發(fā),以每秒1個(gè)單位的速度向終點(diǎn)C移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.

1)求a、b、c的值;

2)若點(diǎn)PA點(diǎn)距離是到B點(diǎn)距離的2倍,求點(diǎn)P的對(duì)應(yīng)的數(shù);

3)當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)QA點(diǎn)出發(fā),以每秒2個(gè)單位的速度向C點(diǎn)運(yùn)動(dòng),Q點(diǎn)到達(dá)C點(diǎn)后.再立即以同樣的速度返回,運(yùn)動(dòng)到終點(diǎn)A,在點(diǎn)Q開始運(yùn)動(dòng)后第幾秒時(shí),PQ兩點(diǎn)之間的距離為8?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形ABCD中,AB6,第一次平移長(zhǎng)方形ABCD沿AB的方向向右平移5個(gè)單位長(zhǎng)度,得到長(zhǎng)方形A1B1C1D1,第2次平移長(zhǎng)方形A1B1C1D1沿A1B1的方向向右平移5個(gè)單位長(zhǎng)度,得到長(zhǎng)方形A2B2C2D2,,第n次平移長(zhǎng)方形An1Bn1Cn1Dn1沿An1Bn1的方向向右平移5個(gè)單位長(zhǎng)度,得到長(zhǎng)方形AnBnCnDnn2),若ABn的長(zhǎng)度為2 026,則n的值為( ).

A. 407B. 406C. 405D. 404

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地管轄AB,CD四個(gè)鎮(zhèn),其中C,A,D三個(gè)鎮(zhèn)在一條直線上,相互兩鎮(zhèn)之間的公路里程如圖所示,由于大山阻隔,原來(lái)從A,C兩鎮(zhèn)去D鎮(zhèn)都需繞到B鎮(zhèn)前往.為了發(fā)展經(jīng)濟(jì),縮短AC兩鎮(zhèn)到D鎮(zhèn)的路程,現(xiàn)決定開鑿隧道修通A,C兩鎮(zhèn)直達(dá)D鎮(zhèn)的公路AD.公路修通后從A鎮(zhèn)去D鎮(zhèn)的路程比原來(lái)縮短了多少千米?(參考數(shù)據(jù):32,≈46.65)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,點(diǎn)D在直角邊BC上,DE平分∠ADB,∠1=∠2=∠3,AC5cm

1)求∠3的度數(shù);

2)判斷DEAB的位置關(guān)系,并說(shuō)明理由;

3)求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電器超市銷售每臺(tái)進(jìn)價(jià)分別為2000元、1700元的A、B兩種型號(hào)的空調(diào),如表是近兩周的銷售情況:

銷售時(shí)段

銷售數(shù)量

銷售收入

A種型號(hào)

B種型號(hào)

第一周

3臺(tái)

5臺(tái)

18000

第二周

4臺(tái)

10臺(tái)

31000

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售總收入進(jìn)貨成本)

1)求A、B兩種型號(hào)的空調(diào)的銷售單價(jià);

2)若超市準(zhǔn)備用不多于54000元的金額再采購(gòu)這兩種型號(hào)的空調(diào)共30臺(tái),求A種型號(hào)的空調(diào)最多能采購(gòu)多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,由7個(gè)形狀,大小完全相同的正六邊形組成的網(wǎng)格,正六邊形的頂點(diǎn)稱為格點(diǎn),已知每個(gè)正六邊形的邊長(zhǎng)為1,△ABC的頂點(diǎn)都在格點(diǎn)上,則△ABC的面積是( )

A.
B.2
C.
D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案