【題目】如圖,在ABC中,∠C=90°,AC=6cm,BC=8cmD、E分別是ACAB的中點(diǎn),連接DE.點(diǎn)P從點(diǎn)D出發(fā),沿DE方向勻速運(yùn)動(dòng),速度為1cm/s;同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為2cm/s,當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t0t4s.解答下列問(wèn)題:

1)當(dāng)t為何值時(shí),以點(diǎn)EP、Q為頂點(diǎn)的三角形與ADE相似?

2)當(dāng)t為何值時(shí),EPQ為等腰三角形?(直接寫出答案即可);

【答案】1)當(dāng)tss時(shí),以點(diǎn)E、P、Q為頂點(diǎn)的三角形與ADE相似.

2t=13秒時(shí),PQE是等腰三角形.

【解析】試題分析:1)如圖①所示,當(dāng)PQAB時(shí),PQE是直角三角形.解決問(wèn)題的要點(diǎn)是將PQE的三邊長(zhǎng)PE、QEPQ用時(shí)間t表示,這需要利用相似三角形(PQE∽△ACB)比例線段關(guān)系(或三角函數(shù));

2)分三種情形討論,如圖3中,當(dāng)點(diǎn)Q在線段BE上時(shí),EP=EQ;如圖4中,當(dāng)點(diǎn)Q在線段AE上時(shí),EQ=EP;如圖5中,當(dāng)點(diǎn)Q在線段AE上時(shí),EQ=QP;如圖6中,當(dāng)點(diǎn)Q在線段AE上時(shí),PQ=EP.分別列出方程即可解決問(wèn)題.

試題解析:(1)如圖1中,

RtABC中,AC=6,BC=8

AB==10

D、E分別是AC、AB的中點(diǎn).

AD=DC=3,AE=EB=5DEBC

DE=BC=4,

PQAB時(shí),

∵∠PQB=ADE=90°,AED=PEQ,

∴△PQE∽△ADE,

,由題意得:PE=4tQE=2t5,

,解得t=;

②如圖2中,

當(dāng)PQDE時(shí),PQE∽△DAE,

,

,

t=,

∴當(dāng)tss時(shí),以點(diǎn)E、PQ為頂點(diǎn)的三角形與ADE相似.

2)如圖3中,當(dāng)點(diǎn)Q在線段BE上時(shí),由EP=EQ,可得4﹣t=5﹣2tt=1

如圖4中,當(dāng)點(diǎn)Q在線段AE上時(shí),由EQ=EP,可得4﹣t=2t﹣5,解得t=3

如圖5中,當(dāng)點(diǎn)Q在線段AE上時(shí),由EQ=QP,可得4t):(2t5=45,解得t=

如圖6中,當(dāng)點(diǎn)Q在線段AE上時(shí),由PQ=EP,可得2t5):(4t=45,解得t=

綜上所述,t=13秒時(shí),PQE是等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題10分)如圖,直線y=x+m和拋物線y=+bx+c都經(jīng)過(guò)點(diǎn)A(1,0),

B(3,2)

(1)求m的值和拋物線的解析式;

(2)求不等式x2+bx+c>x+m的解集(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,∠DAF300,MCD上一點(diǎn),AM的延長(zhǎng)線交BC的延長(zhǎng)線于點(diǎn)F,BE垂直平分AM,DGAF,MGDE

1)判斷四邊形DEMG的形狀,并說(shuō)明理由;

2)求證:△ADM≌△FCM

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一副三角板按如圖甲放置,其中∠ACB=∠DEC90°,∠A45°,∠D30°,斜邊AB6cm,DC7cm.把三角板DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)15°得到D1CE1(如圖乙).這時(shí)ABCD1相交于點(diǎn)O、與D1E1相交于點(diǎn)F

1)求∠OFE1的度數(shù);

2)求線段AD1的長(zhǎng);

3)若把DCE繞著點(diǎn)C順時(shí)針再旋轉(zhuǎn)30°D2CE2,這時(shí)點(diǎn)BD2CE2的內(nèi)部、外部、還是邊上?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形ABCD中,點(diǎn)EBC的中點(diǎn),點(diǎn)F是線段AE上一點(diǎn),BF的延長(zhǎng)線交CD于點(diǎn)G.

(1),則______.

(2),求的值.(用含有m的代數(shù)式表示,寫出解答過(guò)程)

(3)如圖2,四邊形ABCD中,DC//AB,點(diǎn)EBC的延長(zhǎng)線上的一點(diǎn),AEBD相交于點(diǎn)F,若,,則____.(直接用含ab的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠A=30°,∠C=90°E是斜邊AB的中點(diǎn),點(diǎn)PAC邊上一動(dòng)點(diǎn),若RtABC的直角邊AC=4,則PB+PE的最小值等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx2ax軸交于點(diǎn)A和點(diǎn)B1,0),與y軸將于點(diǎn)C0,﹣).

1)求拋物線的解析式;

2)若點(diǎn)D2,n)是拋物線上的一點(diǎn),在y軸左側(cè)的拋物線上存在點(diǎn)T,使△TAD的面積等于△TBD的面積,求出所有滿足條件的點(diǎn)T的坐標(biāo);

3)直線ykxk+2,與拋物線交于兩點(diǎn)PQ,其中在點(diǎn)P在第一象限,點(diǎn)Q在第二象限,PAy軸于點(diǎn)M,QAy軸于點(diǎn)N,連接BM、BN,試判斷△BMN的形狀并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BC是路邊坡角為30°,長(zhǎng)為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DADB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°60°(圖中的點(diǎn)A、B、C、D、M、N均在同一平面內(nèi),CMAN).

(1)求燈桿CD的高度;

(2)求AB的長(zhǎng)度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1(注:與圖2完全相同),在直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)三點(diǎn),,

1)求拋物線的解析式和對(duì)稱軸;

2是拋物線對(duì)稱軸上的一點(diǎn),求滿足的值為最小的點(diǎn)坐標(biāo)(請(qǐng)?jiān)趫D1中探索);

3)在第四象限的拋物線上是否存在點(diǎn),使四邊形是以為對(duì)角線且面積為的平行四邊形?若存在,請(qǐng)求出點(diǎn)坐標(biāo),若不存在請(qǐng)說(shuō)明理由.(請(qǐng)?jiān)趫D2中探索)

查看答案和解析>>

同步練習(xí)冊(cè)答案