【題目】如圖,直線AB、CD相交于點O,∠BOE=90°,OM平分∠AOD,ON平分∠DOE.
(1)若∠MOE=27°,求∠AOC的度數(shù);
(2)當(dāng)∠BOD=x°(0<x<90)時,求∠MON的度數(shù).
【答案】(1)54°;(2)45°.
【解析】
(1)已知∠BOE=90°,根據(jù)平角的定義可得∠AOE =90°,又因∠MOE=27°,可求得∠AOM=63°;由OM平分∠AOD,根據(jù)角平分線的定義可得∠AOD=2∠AOM=126°,再由平角的定義即可求得∠AOC=54°;(2)已知∠BOD=x°,即可求得∠AOD=180°-x°,∠DOE=90°-x°;再由M平分∠AOD,ON平分∠DOE,根據(jù)角平分線的定義可得∠MOD =(180°-x°),∠DON=(90°-x°),由∠MON=∠MOD+∠DON即可求得∠MON的度數(shù).
(1)∵∠BOE=90°,
∴∠AOE=180°-∠BOE=90°,
∵∠MOE=27°,
∴∠AOM=90°-∠MOE=90°-27°=63°,
∵OM平分∠AOD,
∴∠AOD=2∠AOM=126°,
∴∠AOC=180°-∠AOD=180°-126°=54°;
(2)∵∠BOD=x°,
∴∠AOD=180°-x°,
∵OM平分∠AOD,
∴∠MOD=∠AOD=(180°-x°),
∵∠BOE=90°,∠BOD=x°
∴∠DOE=90°-x°;
∵ON平分∠DOE,
∴∠DON=(90°-x°).
∴∠MON=∠MOD+∠DON=(180°-x°)-(90°-x°)=45°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,階梯圖的每個臺階上都標(biāo)著一個數(shù),從下到上的第1個至第4個臺階上依次標(biāo)著﹣5,﹣2,1,9,且任意相鄰四個臺階上數(shù)的和都相等.
嘗試 (1)求前4個臺階上數(shù)的和是多少?
(2)求第5個臺階上的數(shù)x是多少?
應(yīng)用 求從下到上前31個臺階上數(shù)的和.
發(fā)現(xiàn) 試用含k(k為正整數(shù))的式子表示出數(shù)“1”所在的臺階數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有甲、乙兩個瓷器店出售茶壺和茶杯,茶壺每只價格為20元,茶杯每只價格為5元,已知甲店制定的優(yōu)惠方法是買一只茶壺送一只茶杯,乙店按總價的92%付款.學(xué)校辦公室需要購買茶壺4只,茶杯若干只(不少于4只).
(1)當(dāng)購買多少只茶杯時,兩店的優(yōu)惠方法付款一樣多?
(2)當(dāng)需要購買40只茶杯時,若讓你去辦這件事,你打算去哪家商店購買?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,已知AD是角平分線,∠B=66°,∠C=54°.
(1)求∠ADB的度數(shù);
(2)若DE⊥AC于點E,求∠ADE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體育課上全班男生進行了百米測試,達標(biāo)成績?yōu)?/span>14秒,下面是第一小組8名男生的成績記錄,其中“+”表示成績大于14秒,“-”表示成績小于14秒.
(1)求這個小組男生百米測試的達標(biāo)率是多少?
(2)求這個小組8名男生的平均成績是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對多項式(x2-4x+2)(x2-4x+6)+4進行因式分解的過程.
解:設(shè)x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
= y2+8y+16 (第二步)
=(y+4)2 (第三步)
=(x2-4x+4)2 (第四步)
回答下列問題:
(1)該同學(xué)第二步到第三步運用了因式分解的_______.
A.提取公因式
B.平方差公式
C.兩數(shù)和的完全平方公式
D.兩數(shù)差的完全平方公式
(2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)
若不徹底,請直接寫出因式分解的最后結(jié)果_________.
(3)請你模仿以上方法嘗試對多項式(x2-2x)(x2-2x+2)+1進行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC在正方形網(wǎng)格中的位置如圖所示,則點P是△ABC的( )
A.外心
B.內(nèi)心
C.三條高線的交點
D.三條中線的交點
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖像與x軸、y軸分別交于A、B兩點,且A、B的坐標(biāo)分別為(4,0),(0,3).
(1)求一次函數(shù)的表達式.
(2)點C在線段OA上,沿BC將△OBC翻折,O點恰好落在AB上的D處,
求直線BC的表達式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com