(2009•欽州)如圖,AC=AD,BC=BD,則有( )

A.AB垂直平分CD
B.CD垂直平分AB
C.AB與CD互相垂直平分
D.CD平分∠ACB
【答案】分析:由已知條件AC=AD,利用線段的垂直平分線的性質(zhì)的逆用可得點A在CD的垂直平分線上,同理,點B也在CD的垂直平分線上,于是A是符合題意的,是正確的,答案可得.
解答:解:∵AC=AD,BC=BD,
∴點A,B在線段CD的垂直平分線上.
∴AB垂直平分CD.
故選A.
點評:本題考查的知識點為:與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上;兩點確定一條直線.分別應(yīng)用垂直平分線性質(zhì)定理的逆定理是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2009•欽州)如圖,已知拋物線y=x2+bx+c與坐標(biāo)軸交于A、B、C三點,A點的坐標(biāo)為(-1,0),過點C的直線y=x-3與x軸交于點Q,點P是線段BC上的一個動點,過P作PH⊥OB于點H.若PB=5t,且0<t<1.
(1)填空:點C的坐標(biāo)是______,b=______,c=______;
(2)求線段QH的長(用含t的式子表示);
(3)依點P的變化,是否存在t的值,使以P、H、Q為頂點的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)復(fù)習(xí)查漏補缺資料(解析版) 題型:解答題

(2009•欽州)如圖,已知拋物線y=x2+bx+c與坐標(biāo)軸交于A、B、C三點,A點的坐標(biāo)為(-1,0),過點C的直線y=x-3與x軸交于點Q,點P是線段BC上的一個動點,過P作PH⊥OB于點H.若PB=5t,且0<t<1.
(1)填空:點C的坐標(biāo)是______,b=______,c=______;
(2)求線段QH的長(用含t的式子表示);
(3)依點P的變化,是否存在t的值,使以P、H、Q為頂點的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省麗水市縉云縣中考數(shù)學(xué)模擬試卷(沈崇明)(解析版) 題型:解答題

(2009•欽州)如圖,已知拋物線y=x2+bx+c與坐標(biāo)軸交于A、B、C三點,A點的坐標(biāo)為(-1,0),過點C的直線y=x-3與x軸交于點Q,點P是線段BC上的一個動點,過P作PH⊥OB于點H.若PB=5t,且0<t<1.
(1)填空:點C的坐標(biāo)是______,b=______,c=______;
(2)求線段QH的長(用含t的式子表示);
(3)依點P的變化,是否存在t的值,使以P、H、Q為頂點的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣西欽州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•欽州)如圖,已知拋物線y=x2+bx+c與坐標(biāo)軸交于A、B、C三點,A點的坐標(biāo)為(-1,0),過點C的直線y=x-3與x軸交于點Q,點P是線段BC上的一個動點,過P作PH⊥OB于點H.若PB=5t,且0<t<1.
(1)填空:點C的坐標(biāo)是______,b=______,c=______;
(2)求線段QH的長(用含t的式子表示);
(3)依點P的變化,是否存在t的值,使以P、H、Q為頂點的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年文理科基礎(chǔ)調(diào)研中考數(shù)學(xué)一模試卷(解析版) 題型:選擇題

(2009•欽州)如圖轉(zhuǎn)動一長為4cm,寬為3cm的長方形木板,在桌面上作無滑動的翻滾(順時針方向),木板上的點A位置變化為A→A1→A2,其中第二次翻滾時被桌面上另一小木塊擋住,且使木板與桌面成30°角,則A翻滾到A2時,共經(jīng)過的路徑長為( )cm.
A.3.5π
B.4.5π
C.5π
D.10π

查看答案和解析>>

同步練習(xí)冊答案