探索研究

如圖,在直角坐標系中,點為函數(shù)在第一象限內的圖象上的任一點,點的坐標為,直線且與軸平行,過軸的平行線分別交軸,,連結軸于,直線軸于

(1)求證:點為線段的中點;

(2)求證:①四邊形為平行四邊形;

②平行四邊形為菱形;

(3)除點外,直線與拋物線有無其它公共點?并說明理由.

(1)法一:由題可知

,

,即的中點.

法二:,,

軸,

(2)①由(1)可知,

,,

,四邊形為平行四邊形

②設,軸,則,則

軸,垂足為,在中,

平行四邊形為菱形

(3)設直線,由,得,代入得:

直線

設直線與拋物線的公共點為,代入直線關系式得:

,,解得.得公共點為

所以直線與拋物線只有一個公共點

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

探索一個問題:“任意給定一個矩形A,是否存在另一個矩形B,它的周長和面積分別是已知矩形周長和面積的一半”(完成下列空格)
(1)當已知矩形A的邊長分別為6和1時,小亮同學是這樣研究的:設所求矩形的兩邊分別是x和y,精英家教網由題意得方程組:
x+y=
7
2
xy=3
,消去y化簡得:2x2-7x+6=0,
∵△=49-48>0,∴x1=
 
,x2=
 
.∴滿足要求的矩形B存在.
(2)如果已知矩形A的邊長分別為2和1,請你仿照小亮的方法研究是否存在滿足要求的矩形B.
(3)如果矩形A的邊長為m和n,請你研究滿足什么條件時,矩形B存在?
(4)如圖,在同一平面直角坐標系中畫出了一次函數(shù)和反比例函數(shù)的部分圖象,其中x和y分別表示矩形B的兩邊長,請你結合剛才的研究,回答下列問題:
①這個圖象所研究的矩形A的兩邊長為
 
 

②滿足條件的矩形B的兩邊長為
 
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

九(1)班數(shù)學課題學習小組,為了研究學習二次函數(shù)問題,他們經歷了實踐--應用--探究的過程:
(1)實踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標系,請你求出拋物線的解析式.
(2)應用:按規(guī)定機動車輛通過隧道時,車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時不考慮兩車間的空隙)?
(3)探究:該課題學習小組為進一步探索拋物線的有關知識,他們借助上述拋物線模型,提出了以下兩個問題,請予解答:
I.如圖③,在拋物線內作矩形ABCD,使頂點C、D落在拋物線上,頂點A、B落在x軸 上.設矩形ABCD的周長為l求l的最大值.
II•如圖④,過原點作一條y=x的直線OM,交拋物線于點M,交拋物線對稱軸于點N,P 為直線0M上一動點,過P點作x軸的垂線交拋物線于點Q.問在直線OM上是否存在點P,使以P、N、Q為頂點的三角形是等腰直角三角形?若存在,請求出P點的坐標;若不存在,請說明理由.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•西城區(qū)模擬)探索一個問題:“任意給定一個矩形A,是否存在另一個矩形B,它的周長和面積分別是已知矩形周長和面積的一半?”
(1)完成下列空格:
當已知矩形A的邊長分別為6和1時,小明是這樣研究的:設所求矩形的一邊是x,則另一邊為(
7
2
-x),由題意得方程:x(
7
2
-x)=3,化簡得:2x2-7x+6=0
∵b2-4ac=49-48>0,∴x1=
2
2
,x2=
3
2
3
2

∴滿足要求的矩形B存在.
小紅的做法是:設所求矩形的兩邊分別是x和y,由題意得方程組:
x+y=
7
2
xy=3
消去y化簡后也得到:2x2-7x+6=0,(以下同小明的做法)
(2)如果已知矩形A的邊長分別為2和1,請你仿照小明或小紅的方法研究是否存在滿足要求的矩形B.
(3)在小紅的做法中,我們可以把方程組整理為:
y=
7
2
-x
y=
3
x
,此時兩個方程都可以看成是函數(shù)解析式,從而我們可以利用函數(shù)圖象解決一些問題.如圖,在同一平面直角坐標系中畫出了一次函數(shù)和反比例函數(shù)的部分圖象,其中x和y分別表示矩形B的兩邊長,請你結合剛才的研究,回答下列問題:(完成下列空格)
①這個圖象所研究的矩形A的面積為
8
8
;周長為
18
18

②滿足條件的矩形B的兩邊長為
9+
17
4
9+
17
4
9-
17
4
9-
17
4

查看答案和解析>>

科目:初中數(shù)學 來源:江蘇中考真題 題型:解答題

探索研究
如圖,在直角坐標系中,點P為函數(shù)在第一象限內的圖象上的任一點,點A的坐標為,直線且與x軸平行,過作y軸的平行線分別交x軸,,連結交x軸于H,直線交y軸于R.
(1)求證:點H為線段的中點;
(2)求證:①四邊形為平行四邊形; ②平行四邊形為菱形;
(3)除點P外,直線PH與拋物線有無其它公共點?并說明理由.

查看答案和解析>>

同步練習冊答案