【題目】如圖,AB與CD都是垂直于地面BC的建筑物.在建筑物AB的頂點(diǎn)A處測(cè)得建筑物CD的底端C的俯角為24°,測(cè)得頂端D的仰角為36°,若AC=200米,AD=300米,求建筑物CD的高度.(結(jié)果保留根號(hào))
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某導(dǎo)彈發(fā)射車在山頂A處進(jìn)行射擊訓(xùn)練的示意圖,點(diǎn)A在y軸上,與原點(diǎn)O的距離是8百米(為了計(jì)算方便,我們把本題中的距離用百米作單位).此導(dǎo)彈發(fā)射車在A處進(jìn)行某個(gè)角度的射擊訓(xùn)練,點(diǎn)M是導(dǎo)彈向右上射出后某時(shí)刻的位置.忽略空氣阻力,實(shí)驗(yàn)表明:導(dǎo)彈射出t秒時(shí),點(diǎn)M,A的水平距離是vt百米,點(diǎn)M與x軸(水平)的豎直距離是(8+vt﹣5t2)百米(v的值由發(fā)射者設(shè)定).在點(diǎn)A和x軸上的點(diǎn)B處觀測(cè)射擊目標(biāo)P的仰角分別是a和β,OB=3百米,tanα=.tanβ=.
(1)若v=7,完成下列問題:
①當(dāng)點(diǎn)M,A的水平距離是7百米時(shí),點(diǎn)M到x軸的距離是 百米;
②設(shè)點(diǎn)M坐標(biāo)為(x,y),求y與x的關(guān)系式(不必寫x的取值范圍).
(2)按(1)的射擊方式,能否命中目標(biāo)P?請(qǐng)說(shuō)明理由.
(3)目標(biāo)以m百米/秒的速度從點(diǎn)P向右移動(dòng),當(dāng)v時(shí),若能使目標(biāo)被擊中,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,AD是⊙O的弦,BC是⊙O的切線,切點(diǎn)為B.
(1)求證:;
(2)若AB=5,AD=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.
(1)求a,k的值及點(diǎn)B的坐標(biāo);
(2)若點(diǎn)P在x軸上,且S△ACP=S△BOC,直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB、BC、CD分別與⊙O相切于E、F、G三點(diǎn),且AB∥CD,OB=6cm,OC=8cm.
(Ⅰ)求證:OB⊥OC;
(Ⅱ)求CG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠計(jì)劃生產(chǎn)A、B兩種產(chǎn)品共100件,已知A產(chǎn)品每件可獲利潤(rùn)400元,B產(chǎn)品每件可獲利潤(rùn)500元,其中規(guī)定生產(chǎn)B產(chǎn)品的數(shù)量不超過(guò)A產(chǎn)品數(shù)量的2倍,設(shè)生產(chǎn)A產(chǎn)品的數(shù)量為x(件),生產(chǎn)兩種產(chǎn)品的獲利總額為y(元)
(1)寫出y與x之間的函數(shù)表達(dá)式;
(2)該廠生產(chǎn)A、B兩種產(chǎn)品各多少臺(tái),才能使獲利總額最大?最大利潤(rùn)是多少?
(3)在實(shí)際生產(chǎn)過(guò)程中,A產(chǎn)品生產(chǎn)成本下降了m(0<m<200)元且最多生產(chǎn)60件,B產(chǎn)品生產(chǎn)成本不變,請(qǐng)根據(jù)以上信息,設(shè)計(jì)出該廠生產(chǎn)100件A、B兩種產(chǎn)品獲利最多的生產(chǎn)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖示,正方形ABCD的頂點(diǎn)A在等腰直角三角形DEF的斜邊EF上,EF與BC相交于點(diǎn)G,連接CF.
①求證:△DAE≌△DCF;
②求證:△ABG∽△CFG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(0,4)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線.動(dòng)點(diǎn)P從點(diǎn)A開始沿AB方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)Q從O點(diǎn)開始沿x軸正方向以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),且動(dòng)點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=1時(shí),得到P1、Q1,求經(jīng)過(guò)A、P1、Q1三點(diǎn)的拋物線解析式及對(duì)稱軸l;
(2)當(dāng)t為何值時(shí),直線PQ與⊙C相切?并寫出此時(shí)點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,拋物線對(duì)稱軸l上存在一點(diǎn)N,使NP+NQ最小,求出點(diǎn)N的坐標(biāo)并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△EFG中,∠EFG=90°,EF=FG,且點(diǎn)E,F分別在矩形ABCD的邊AB,AD上.
(1)如圖1,當(dāng)點(diǎn)G在CD上時(shí),求證:△AEF≌△DFG;
(2)如圖2,若F是AD的中點(diǎn),FG與CD相交于點(diǎn)N,連接EN,求證:EN=AE+DN;
(3)如圖3,若AE=AD,EG,FG分別交CD于點(diǎn)M,N,求證:MG2=MNMD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com