【題目】(閱讀)如圖1,四邊形OABC中,OA=a,OC=3,BC=2,

∠AOC=∠BCO=90°,經(jīng)過(guò)點(diǎn)O的直線l將四邊形分成兩部分,直線lOC所成的角設(shè)為θ,將四邊形OABC的直角∠OCB沿直線l折疊,點(diǎn)C落在點(diǎn)D處,我們把這個(gè)操作過(guò)程記為FZ[θ,a].

(理解)

若點(diǎn)D與點(diǎn)A重合,則這個(gè)操作過(guò)程為FZ[45°,3];

(嘗試)

(1)若點(diǎn)D恰為AB的中點(diǎn)(如圖2),求θ;

(2)經(jīng)過(guò)FZ[45°,a]操作,點(diǎn)B落在點(diǎn)E處,若點(diǎn)E在四邊形OABC的邊AB上,求出a的值;若點(diǎn)E落在四邊形OABC的外部,直接寫(xiě)出a的取值范圍.

【答案】(1)θ =30°;(2)當(dāng)0<a<5時(shí),點(diǎn)E落在四邊0ABC的外部.

【解析】

(1)先根據(jù)ASA定理得出△BCD≌△AFD,故可得出CD=FD,即點(diǎn)DRt△COF斜邊CF的中點(diǎn),由折疊可知,OD=OC,故OD=OC=CD,△OCD為等邊三角形,∠COD=60°,根據(jù)等邊三角形三線合一的性質(zhì)可得出結(jié)論;(2)根據(jù)點(diǎn)E四邊形0ABC的邊AB上可知AB⊥直線l,根據(jù)由折疊可知,OD=OC=3,DE=BC=2.再由θ=45°,AB⊥直線l,得出△ADE為等腰直角三角形,故可得出OA的長(zhǎng),由此可得出結(jié)論.

(1)連接CD并延長(zhǎng),交OA延長(zhǎng)線于點(diǎn)F.

△BCD△AFD中,

,

∴△BCD≌△AFD(ASA).

∴CD=FD,即點(diǎn)DRt△COF斜邊CF的中點(diǎn),

∴OD=CF=CD.

又由折疊可知,OD=OC,

∴OD=OC=CD,

∴△OCD為等邊三角形,∠COD=60°,

∴θ=∠COD=30°;

(2)∵點(diǎn)E四邊形OABC的邊AB上,

∴AB⊥直線l

由折疊可知,OD=OC=3,DE=BC=2.

∵θ=45°,AB⊥直線l,

∴△ADE為等腰直角三角形,

∴AD=DE=2,

∴OA=OD+AD=3+2=5,

∴a=5;

由圖可知,當(dāng)0<a<5時(shí),點(diǎn)E落在四邊形0ABC的外部.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),經(jīng)過(guò)點(diǎn)的直線軸交于點(diǎn),與拋物線的另一個(gè)交點(diǎn)為,且

直接寫(xiě)出點(diǎn)的坐標(biāo),并求直線的函數(shù)表達(dá)式(其中,用含的式子表示);

點(diǎn)是直線上方的拋物線上的一點(diǎn),若的面積的最大值為,求的值;

設(shè)是拋物線對(duì)稱軸上的一點(diǎn),點(diǎn)在拋物線上,以點(diǎn),,為頂點(diǎn)的四邊形能否成為矩形?若能,求出點(diǎn)的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖分別是吊車在吊一物品時(shí)的實(shí)物圖與示意圖.已知吊車底盤的高度為米,支架的長(zhǎng)為米,且與地面成角,吊繩與支架的夾角為,吊臂與地面成角.(參考數(shù)據(jù):,,

求吊繩與吊臂的長(zhǎng)度.

求吊車的吊臂頂端點(diǎn)距地面的高度是多少米.(精確到米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中每個(gè)小格的邊長(zhǎng)均為,的頂點(diǎn)都在格點(diǎn)上,建立平面直角坐標(biāo)系.

點(diǎn)的坐標(biāo)是________,點(diǎn)的坐標(biāo)是________

以原點(diǎn)為位似中心,將縮小,使變換后的到的對(duì)應(yīng)邊的比為請(qǐng)?jiān)诰W(wǎng)格中畫(huà)出,并寫(xiě)出的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A-2,4), B-3,-2),C1,2).

1)畫(huà)出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,寫(xiě)出點(diǎn)A1B1、C1的坐標(biāo).

2)在y軸上找一個(gè)點(diǎn)P,使△ABP的周長(zhǎng)最小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC,ABACDEAB于點(diǎn)E,DFAC于點(diǎn)F,BDCD

求證:DEDF

證明:∵ABAC

∴∠B=∠C   ),

DEABDFAC

∴∠BED=∠DFC90°

BDECDF

∴△BDE≌△CDF   ).

DEDF   

1)請(qǐng)?jiān)诶ㄌ?hào)里寫(xiě)出推理的依據(jù).

2)請(qǐng)你寫(xiě)出另一種證明此題的方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)用兩種不同的方法,在下圖所給的兩個(gè)矩形中各畫(huà)一個(gè)不為正方形的菱形,且菱形的四個(gè)頂點(diǎn)都在矩形的邊上(尺規(guī)作圖,保留作圖痕跡),并說(shuō)明思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC,ABC=90°BEAC于點(diǎn)E,點(diǎn)DAC,ADABAK平分∠CAB,交線段BE于點(diǎn)F交邊CB于點(diǎn)K

1)在圖中找出一對(duì)全等三角形,并證明;

2)求證:FDBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】賞中華詩(shī)詞,尋文化基因,品生活之美,某校舉辦了首屆中國(guó)詩(shī)詞大會(huì),經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時(shí)默寫(xiě)50首古詩(shī)詞,若每正確默寫(xiě)出一首古詩(shī)詞得2分,根據(jù)測(cè)試成績(jī)繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:

(1)①頻數(shù)分布表中a的值為;②若測(cè)試成績(jī)不低于80分為優(yōu)秀,則本次測(cè)試的優(yōu)秀率是;③將頻數(shù)分布直方圖補(bǔ)充完整;

(2)第510名同學(xué)中,有4名男同學(xué)(用A,B,C,D表示),現(xiàn)將這4名同學(xué)分成兩組(每組2人)進(jìn)行對(duì)抗練習(xí),求AB兩名男同學(xué)能分在同一組的概率.

組別

成績(jī)x

頻數(shù)(人數(shù))

1

50≤x<60

6

2

60≤x<70

8

3

70≤x<80

14

4

80≤x<90

a

5

90≤x<100

10

查看答案和解析>>

同步練習(xí)冊(cè)答案