【題目】如圖,這是某市部分簡圖,為了確定各建筑物的位置:

1)請你以火車站為原點建立平面直角坐標系,若以小方格的邊長為單位長度,寫出市場的坐標為_______;超市的坐標為_____________

2)請將體育場為A、賓館為C和火車站為B看作三點用線段連起來,得△ABC,然后將△ABC向下平移4個單位長度,畫出平移后的,寫出的坐標.

3)求出的面積.

【答案】1)建立坐標系見解析;(4,3);(2-3);(2)圖見解析;;(37

【解析】

1)以火車站為原點建立平面直角坐標系,然后根據(jù)平面直角坐標系即可寫出結論;

2)順次連接體育場A、賓館C和火車站B,可得△ABC,然后將△ABC向下平移4個單位長度,得到即可,然后根據(jù)平面直角坐標系即可寫出各點坐標即可;

3)利用長方形的面積減去3個直角三角形的面積即可求出結論.

解:(1)以火車站為原點建立平面直角坐標系,如下圖所示,由平面直角坐標系可知:市場的坐標為(4,3),超市的坐標為(2,-3

故答案為:(4,3);(2,-3);

2)順次連接體育場A、賓館C和火車站B,可得△ABC,然后將△ABC向下平移4個單位長度,得到,如下圖所示,即為所求,由平面直角坐標系可知:;

3)由坐標系可得:=6×3×6×1×4×3×2×2=7

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABDE,ACDF,AC=DF下列條件中不能判斷ABC≌△DEF的是( 。

A. AB=DE B. B=∠E C. EF=BC D. EFBC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠準備翻建新的大門,廠門要求設計成軸對稱的拱形曲線.已知廠門的最大寬度AB=12m,最大高度OC=4m,工廠的運輸卡車的高度是3m,寬度是5.8m.現(xiàn)設計了兩種方案.方案一:建成拋物線形狀(如圖1);方案二:建成圓弧形狀(如圖2).為確保工廠的卡車在通過廠門時更安全,你認為應采用哪種設計方案?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們在學習“實數(shù)”時,畫了這樣一個圖,以數(shù)軸上的單位長為1的線段作一個正方形,然后以原點O為圓心,正方形的對角線長為半徑畫弧交x軸于點A,請根據(jù)圖形回答下列問題:

1)線段OA的長度是___________

2)這種研究和解決問題的方式,體現(xiàn)了的數(shù)學思想方法( ).

A.數(shù)形結合B.歸納C.換元D.消元

3)計算:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,AC是對角線,今有較大的直角三角板,一邊始終經過點B,直角頂點P在射線AC上移動,另一邊交DC于點Q.

(1)如圖①,當點Q在DC邊上時,猜想并寫出PB與PQ所滿足的數(shù)量關系,并加以證明;

(2)如圖②,當點Q落在DC的延長線上時,猜想并寫出PB與PQ滿足的數(shù)量關系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠BAC90°,ADCD,點E是邊AC的中點,連接DE,DE的延長線與邊BC相交于點FAGBC,交DE于點G,連接AF、CG.

(1)求證:AFBF;

(2)如果ABAC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AD6,DC8,菱形EFGH的三個頂點E、G、H分別在矩形ABCD的邊AB、CD、DA上,AH2.

(1)已知DG6,求AE的長;

(2)已知DG2,求證:四邊形EFGH為正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點B、E、C、F在一條直線上,AB=DF,AC=DE,A=D.

(1)求證:ACDE;

(2)BF=13,EC=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表是根據(jù)對初一(1)班的50名同學平時最愛吃的食物的種類進行的問卷調查繪制成的統(tǒng)計表,請?zhí)顫M缺少的項并回答后面的問題.

肉類

蔬菜類

瓜果類

水產類

男生

22

1

2

女生

4

5

3

頻率

64%

14%

12%

1)選擇適當?shù)慕y(tǒng)計圖表示男生平時最愛吃的食物的種類情況;

2)就給出的初一(1)班的同學平時最愛吃的食物的種類情況,請你結合自己的年齡特點簡略談談自己的看法.

查看答案和解析>>

同步練習冊答案