【題目】如圖,在殘破的圓形工件上量得一條弦BC=16,的中點D到BC的距離ED=4,則這個圓形工件的半徑是_____.
【答案】10.
【解析】
由DE⊥BC,DE平分弧BC,根據(jù)垂徑定理的推論得到圓心在直線DE上,設(shè)圓心為O,連結(jié)OB,設(shè)圓的半徑為R,根據(jù)垂徑定理得BE=CE=BC=8,然后根據(jù)勾股定理得到R2=82+(R﹣4)2,再解方程即可.
∵DE⊥BC,DE平分弧BC,
∴圓心在直線DE上,
設(shè)圓心為O,如圖,連結(jié)OB,設(shè)圓的半徑為R,則OE=R﹣4,
∵OE⊥BC,
∴BE=CE=BC=×16=8,
在Rt△OEB中,OB2=BE2+OE2,即R2=82+(R﹣4)2,解得R=10,
即這個圓形工件的半徑是10.
故答案為:10
科目:初中數(shù)學 來源: 題型:
【題目】某水果批發(fā)商銷售每箱進價為40元的蘋果,物價部門規(guī)定每箱售價不得高于55元,市場調(diào)查發(fā)現(xiàn):若每箱以50元的價格出售,平均每天銷售80箱,價格每提高1元,平均每天少銷售2箱.
⑴.求平均每天銷售量(箱)與銷售價(元/箱)之間的函數(shù)關(guān)系式;
⑵.求該批發(fā)商平均每天的銷售利潤(元)與銷售價(元/箱)之間的函數(shù)關(guān)系式;
⑶.當每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=α,將△ABC繞點C順時針方向旋轉(zhuǎn)到△A′B′C的位置,使AA′∥BC,設(shè)旋轉(zhuǎn)角為β,則α,β滿足關(guān)系( 。
A.α+β=90°B.α+2β=180°C.2α+β=180°D.α+β=180°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷.某校?shù)學興趣小組設(shè)計了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:
(1)這次活動共調(diào)查了 人;在扇形統(tǒng)計圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計圖補充完整.觀察此圖,支付方式的“眾數(shù)”是“ ”;
(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,點E在BC的延長線上,且CE=BC,AE=AB,AE、DC相交于點O,連接DE.若∠AOD=120°,AC=4,則CD的大小為( 。
A.8B.4C.8D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知Rt△ABC中,∠ACB=90°,BC=6,∠A=30°,將△ABC繞點C逆時針旋轉(zhuǎn)α,(0°<α≤60°),得到△DEC,設(shè)直線DE與直線AB相交于點P.
(1)如圖1,連接PC,求證:PC平分∠EPA.
(2)如圖2,在△ABC旋轉(zhuǎn)過程中,連接BE,當△BCE的面積為9時,求α的度數(shù).
(3)如圖3,當點P在邊AB上時,問:PE+PB是否為定值?如果是,請求出此定值;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知k是常數(shù),拋物線y=x2+(k2+k-6)x+3k的對稱軸是y軸,并且與x軸有兩個交點.
(1)求k的值:
(2)若點P在拋物線y=x2+(k2+k-6)x+3k上,且P到y軸的距離是2,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點C(0,3),與x軸分別交于點A,點B(3,0).點P是直線BC上方的拋物線上一動點.
(1)求二次函數(shù)y=ax2+2x+c的表達式;
(2)連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時點P的坐標;
(3)當點P運動到什么位置時,四邊形ACPB的面積最大?求出此時P點的坐標和四邊形ACPB的最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O是正方形ABCD邊上一點,以O為圓心,OB為半徑畫圓與AD交于點E,過點E作⊙O的切線交CD于F,將△DEF沿EF對折,點D的對稱點D'恰好落在⊙O上.若AB=6,則OB的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com