【題目】如圖,點(diǎn)P是反比例函數(shù)y= (k<0)圖象上的點(diǎn),PA垂直x軸于點(diǎn)A(﹣1,0),點(diǎn)C的坐標(biāo)為(1,0),PC交y軸于點(diǎn)B,連結(jié)AB,已知AB= .
(1)k的值是;
(2)若M(a,b)是該反比例函數(shù)圖象上的點(diǎn),且滿足∠MBA<∠ABC,則a的取值范圍是 .
【答案】
(1)-4
(2)0<a<2或 <a<
【解析】解:(1.)如圖,
PA垂直x軸于點(diǎn)A(﹣1,0),
∴OA=1,可設(shè)P(﹣1,t).
又∵AB= ,
∴OB= = =2,
∴B(0,2).
又∵點(diǎn)C的坐標(biāo)為(1,0),
∴直線BC的解析式是:y=﹣2x+2.
∵點(diǎn)P在直線BC上,
∴t=2+2=4
∴點(diǎn)P的坐標(biāo)是(﹣1,4),
∴k=﹣4.
所以答案是:﹣4;
解法二:用相似三角形
由題意易得△CPA~CBO,
∴
∴
∴AP=4,
∴k=﹣4.
(2.)分類討論
①如圖1,延長(zhǎng)線段BC交雙曲線于點(diǎn)M.
由(1)知,直線BC的解析式是y=﹣2x+2,反比例函數(shù)的解析式是y=﹣ .
則 ,
解得, 或 (不合題意,舍去).
根據(jù)圖示知,當(dāng)0<a<2時(shí),∠MBA<∠ABC;
②如圖,作C關(guān)于直線AB的對(duì)稱點(diǎn)C′,連接BC′并延長(zhǎng)交雙曲線于點(diǎn)M′.
∵A(﹣1,0),B(0,2),
∴直線AB的解析式為:y=2x+2.
直線CC′是與直線AB垂直的,
根據(jù)兩條直線垂直,兩直線的斜率互為負(fù)倒數(shù),即:k1k2=﹣1
可設(shè)CC′解析式為:y=﹣ x+b,
∵C(1,0),
∴b= ,
∴CC′解析式為:y=﹣ x+ ,
∵AC=AC′=2,
∴設(shè)C′點(diǎn)橫坐標(biāo)為:x,則縱坐標(biāo)為:﹣ x+ ,
∴(﹣x﹣AO)2+(﹣ x+ )2=(AC′)2 ,
解得:x1=﹣ ,x2=1(不合題意舍去),
∴C′(﹣ , ),則易求直線BC′的解析式為:y= x+2,
∴ ,
解得:x1= ,x2= ,
則根據(jù)圖示知,當(dāng) <a< 時(shí),∠MBA<∠ABC.
綜合①②知,當(dāng)0<a<2或 <a< 時(shí),∠MBA<∠ABC.
故答案是:0<a<2或 <a< .
【考點(diǎn)精析】利用反比例函數(shù)的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知性質(zhì):當(dāng)k>0時(shí)雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減小; 當(dāng)k<0時(shí)雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明為準(zhǔn)備體育中考,每天早晨堅(jiān)持鍛煉,某天他慢跑到江邊,休息一會(huì)后快跑回家,能大致反映小明離家的距離y(m)與時(shí)間x(s)的函數(shù)關(guān)系圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小芳同學(xué)有兩根長(zhǎng)度為4cm、10cm的木棒,她想釘一個(gè)三角形相框,桌上有五根木棒供她選擇(如圖所示),從中任選一根,能釘成三角形相框的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段AB=8cm,點(diǎn)C是直線AB上一點(diǎn),線段BC=3cm,D、E分別是線段AB與線段CB的中點(diǎn),求線段DE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷售甲、乙兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表:
甲 | 乙 | |
進(jìn)價(jià)(元/部) | 4000 | 2500 |
售價(jià)(元/部) | 4300 | 3000 |
該商場(chǎng)計(jì)劃購(gòu)進(jìn)兩種手機(jī)若干部,共需15.5萬(wàn)元,預(yù)計(jì)全部銷售后可獲毛利潤(rùn)共2.1萬(wàn)元.
(毛利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×銷售量)
(1)該商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種手機(jī)各多少部?
(2)通過(guò)市場(chǎng)調(diào)研,該商場(chǎng)決定在原計(jì)劃的基礎(chǔ)上,減少甲種手機(jī)的購(gòu)進(jìn)數(shù)量,增加乙種手機(jī)的購(gòu)進(jìn)數(shù)量.已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的2倍,而且用于購(gòu)進(jìn)這兩種手機(jī)的總資金不超過(guò)16萬(wàn)元,該商場(chǎng)怎樣進(jìn)貨,使全部銷售后獲得的毛利潤(rùn)最大?并求出最大毛利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一節(jié)地理課結(jié)束后,小明拿出地球儀,突發(fā)奇想:地球儀環(huán)形支架的長(zhǎng)度比地球儀上畫的赤道的長(zhǎng)度長(zhǎng)多少? 活動(dòng)一:如圖1,求大圓與小圓的周長(zhǎng)之差?
活動(dòng)二:如圖2,以O(shè)為圓心,任意畫出兩個(gè)圓,兩圓半徑相差6cm,求大圓與小圓的周長(zhǎng)之差?
活動(dòng)三:若地球儀與環(huán)形支架之間的間隙為k(cm),請(qǐng)直接寫出地球儀環(huán)形支架的長(zhǎng)度比地球儀上畫的赤道的長(zhǎng)度長(zhǎng)多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)A是x軸正半軸上的動(dòng)點(diǎn),點(diǎn)B坐標(biāo)為(0,4),M是線段AB的中點(diǎn),將點(diǎn)M繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)90°得到點(diǎn)C,過(guò)點(diǎn)C作x軸的垂線,垂足為F,過(guò)點(diǎn)B作y軸的垂線與直線CF相交于點(diǎn)E,點(diǎn)D是點(diǎn)A關(guān)于直線CF的對(duì)稱點(diǎn),連結(jié)AC,BC,CD,設(shè)點(diǎn)A的橫坐標(biāo)為t.
(1)當(dāng)t=2時(shí),求CF的長(zhǎng);
(2)①當(dāng)t為何值時(shí),點(diǎn)C落在線段BD上;
②設(shè)△BCE的面積為S,求S與t之間的函數(shù)關(guān)系式;
(3)如圖2,當(dāng)點(diǎn)C與點(diǎn)E重合時(shí),將△CDF沿x軸左右平移得到△C′D′F′,再將A,B,C′,D′為頂點(diǎn)的四邊形沿C′F′剪開,得到兩個(gè)圖形,用這兩個(gè)圖形拼成不重疊且無(wú)縫隙的圖形恰好是三角形.請(qǐng)直接寫出所有符合上述條件的點(diǎn)C′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算下列各題
(1)計(jì)算:|﹣4|﹣ +(﹣2)0;
(2)化簡(jiǎn):a(b+1)﹣ab﹣1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P是拋物線:y=x2上的動(dòng)點(diǎn)(點(diǎn)在第一象限內(nèi)).連接 OP,過(guò)點(diǎn)0作OP的垂線交拋物線于另一點(diǎn)Q.連接PQ,交y軸于點(diǎn)M.作PA丄x軸于點(diǎn)A,QB丄x軸于點(diǎn)B.設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)如圖1,當(dāng)m= 時(shí),
①求線段OP的長(zhǎng)和tan∠POM的值;
②在y軸上找一點(diǎn)C,使△OCQ是以O(shè)Q為腰的等腰三角形,求點(diǎn)C的坐標(biāo);
(2)如圖2,連接AM、BM,分別與OP、OQ相交于點(diǎn)D、E.
①用含m的代數(shù)式表示點(diǎn)Q的坐標(biāo);
②求證:四邊形ODME是矩形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com