內(nèi)角和與外角和相等的多邊形的邊數(shù)是       .
4.

試題分析:根據(jù)多邊形的內(nèi)角和公式(n-2)•180°與多邊形的外角和定理列式進(jìn)行計算即可得解:
設(shè)多邊形的邊數(shù)為n,根據(jù)題意得
(n-2)•180°=360°,解得n=4.
∴內(nèi)角和與外角和相等的多邊形的邊數(shù)是4.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形紙片ABCD的邊長為8,將其沿EF折疊,則圖中①②③④四個三角形的周長之和為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,CD=2,則點(diǎn)D到AB的距離是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題


【問題提出】
學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對“兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等”的情形進(jìn)行研究.
【初步思考】
我們不妨將問題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對∠B進(jìn)行分類,可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.

【深入探究】
第一種情況:當(dāng)∠B是直角時,△ABC≌△DEF.
(1)如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù)       ,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當(dāng)∠B是鈍角時,△ABC≌△DEF.
(2)如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF.
第三種情況:當(dāng)∠B是銳角時,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫作法,保留作圖痕跡)
(4)∠B還要滿足什么條件,就可以使△ABC≌△DEF?請直接寫出結(jié)論:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若       ,則△ABC≌△DEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,∠A=30°,∠B=45°,AC=2,則AB的長為           

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一個直角三角形的兩邊長分別為9和40,則第三邊長的平方是    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一副三角板如圖疊放在一起,則圖中∠α的度數(shù)為(  )
A.75°B.60°C.65°D.55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,已知點(diǎn)A(-,0),B(,0),點(diǎn)C在x軸上,且AC+BC=6,寫出滿足條件的所有點(diǎn)C的坐標(biāo)                  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

問題:如圖1,在△ABC中,BE平分∠ABC,CE平分∠ACB.若∠A=800,則∠BEC=         ;若∠A=n0,則∠BEC=         
探究:
(1)如圖2,在△ABC中,BD、BE三等分∠ABC,CD、CE三等分∠ACB.若∠A=n0,則∠BEC=         ;
(2)如圖3,在△ABC中,BE平分∠ABC,CE平分外角∠ACM.若∠A=n0,則∠BEC=         ;
(3)如圖4,在△ABC中,BE平分外角∠CBM,CE平分外角∠BCN.若∠A=n0,則∠BEC=        

查看答案和解析>>

同步練習(xí)冊答案