【題目】如圖,射線AB∥射線CD,∠CAB與∠ACD的平分線交于點E,AC=4,點P是射線AB上的一動點,連結PE并延長交射線CD于點Q.給出下列結論:①△ACE是直角三角形;②S四邊形APQC=2S△ACE;③設AP=x,CQ=y,則y關于x的函數(shù)表達式是y=﹣x+4(0≤x≤4),其中正確的是( )
A. ①②③B. ①②C. ①③D. ②③
【答案】A
【解析】
①正確.由AB∥CD,推出∠BAC+∠DCA=180°,由∠ACE=∠DCA,∠CAE=∠BAC,即可推出∠ACE+∠CAE=(∠DCA+∠BAC)=90°,延長即可解決問題;
②正確.首先證明AC=AK,再證明△QCE≌△PKE,即可解決問題;
③正確.只要證明AP+CQ=AC即可解決問題.
解:如圖延長CE交AB于K.
∵AB∥CD,
∴∠BAC+∠DCA=180°,
∵∠ACE=∠DCA,∠CAE=∠BAC,
∴∠ACE+∠CAE=(∠DCA+∠BAC)=90°,
∴∠AEC=90°,
∴AE⊥CK,△AEC是直角三角形,故①正確,
∵∠QCK=∠AKC=∠ACK,
∴AC=AK,
∵AE⊥CK,
∴CE=EK,
在△QCE和△PKE中,
,
∴△QCE≌△PKE,
∴CQ=PK,S△QCE=S△PEK,
∴S四邊形APQC=S△ACK=2S△ACE,故②正確,
∵AP=x,CQ=y,AC=4,
∴AP+CQ=AP+PK=AK=AC,
∴x+y=4,
∴y=-x+4(0≤x≤4),故③正確,
故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】已知:在Rt△ABC中,∠C=90°,∠A、∠B、∠C的對邊分別為a、b、c,設△ABC的面積為S,周長為l.
(1)填表:
三邊a、b、c | ||
3、4、5 | 2 | |
5、12、13 | 4 | |
8、15、17 | 6 |
(2)如果,觀察上表猜想: (用含有m的代數(shù)式表示).
(3)證明(2)中的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市開展一項自行車旅游活動,線路需經A,B,C,D四地,如圖,其中A,B,C三地在同一直線上,D地在A地北偏東30°方向,在C地北偏西45°方向,C地在A地北偏東75°方向.且BC=CD=20km,問沿上述線路從A地到D地的路程大約是多少?(最后結果保留整數(shù),參考數(shù)據(jù):sin15°≈0.25,cos15°≈0.97,tan15°≈0.27, )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABC是等邊三角形,點D是線段AC上的一動點,E在BC的延長線上,且BD=DE.
(1)如圖,若點D為線段AC的中點,求證:AD=CE;
(2)如圖,若點D為線段AC上任意一點,求證:AD=CE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】看圖填空,并在括號內說明理由: 如圖,已知∠BAP與∠APD互補,∠1=∠2,說明∠E=∠F.
證明:∵∠BAP與∠APD互補(_________), ∴AB∥CD(____________),
∴∠BAP=∠APC(__________).
又∵∠1=∠2(__________),
∴∠BAP﹣∠1=∠APC﹣∠2(_________),即∠3=∠4,
∴AE∥PF,(___________),
∴∠E=∠F(__________).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=90°,OM平分∠AOB,將直角三角板的頂點P在射線OM上移動,兩直角邊分別與OA、OB相交于點C、D,問PC與PD相等嗎?試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com