【題目】如圖,在的正方形方格中,每個(gè)小正方形的邊長(zhǎng)都是1,頂點(diǎn)都在網(wǎng)格線的交點(diǎn)處的三角形,是一個(gè)格點(diǎn)三角形.

1)在圖1中,請(qǐng)判斷是否相似,并說(shuō)明理由;

2)在圖2,中,以O為位似中心,再畫(huà)一個(gè)格點(diǎn)三角形,使他與的位似比為;

3)在圖3中,請(qǐng)畫(huà)出所有滿足條件的格點(diǎn)三角形,它與相似,且有一條公共邊和一個(gè)公共角.

【答案】1相似,理由詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)詳見(jiàn)解析

【解析】

1)利用網(wǎng)格結(jié)合勾股定理得出三角形各邊長(zhǎng),進(jìn)而得出對(duì)應(yīng)邊的比相等,進(jìn)而得出答案;

2)利用位似圖形的性質(zhì)結(jié)合位似比得出答案;

3)利用相似三角形的性質(zhì)結(jié)合有一條公共邊和一個(gè)公共角進(jìn)而得出答案.

解:(1)如圖①所示,相似,

理由,

,

∴△ABC∽△DEF;

2)如圖②所示,即為所求;

3)如圖③所示,即為所求;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在由邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格圖中有格點(diǎn)△ABC(注:頂點(diǎn)在網(wǎng)格線交點(diǎn)處的三角形叫做格點(diǎn)三角形).只用沒(méi)有刻度的直尺,按如下要求畫(huà)圖,

(1)以點(diǎn)C為位似中心,在如圖中作△DECABC,且相似比為1:2;

(2)若點(diǎn)B為原點(diǎn),點(diǎn)C(4,0),請(qǐng)?jiān)?/span>如圖中畫(huà)出平面直角坐標(biāo)系,作出△ABC的外心,并直接寫(xiě)出△ABC的外心的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】記某商品銷售單價(jià)為x元,商家銷售此種商品每月獲得的銷售利潤(rùn)為y元,且y是關(guān)于x的二次函數(shù).已知當(dāng)商家將此種商品銷售單價(jià)分別定為55元或75元時(shí),他每月均可獲得銷售利潤(rùn)1800元;當(dāng)商家將此種商品銷售單價(jià)定為80元時(shí),他每月可獲得銷售利潤(rùn)1550元,則yx的函數(shù)關(guān)系式是(

A.y=﹣(x602+1825B.y=﹣2x602+1850

C.y=﹣(x652+1900D.y=﹣2x652+2000

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖①表示一個(gè)時(shí)鐘的鐘面垂直固定于水平桌面上,其中分針上有一點(diǎn)A,當(dāng)鐘面顯示3點(diǎn)30分時(shí),分針垂直于桌面,A點(diǎn)距桌面的高度為10cm.圖②表示當(dāng)鐘面顯示3點(diǎn)45分時(shí),A點(diǎn)距桌面的高度為16cm,若鐘面顯示3點(diǎn)55分時(shí),A點(diǎn)距桌面的高度為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,,,點(diǎn)D在邊AB上,且,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),以PD為邊向上做正方形,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為秒,正方形重疊部分的面積為

1)用含有的代數(shù)式表示線段的長(zhǎng).

2)當(dāng)點(diǎn)落在的邊上時(shí),求的值.

3)求的函數(shù)關(guān)系式.

4)當(dāng)點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),做點(diǎn)N關(guān)于CD的對(duì)稱點(diǎn),當(dāng)的某一個(gè)頂點(diǎn)的連線平分的面積時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)yx0)的圖象與直線y=2x+1交于點(diǎn)A1,m

1)求k,m的值;

2)已知點(diǎn)P0,n)(n0),過(guò)點(diǎn)P作平行于x軸的直線,交直線y=2x+1于點(diǎn)B,交函數(shù)yx0)的圖象于點(diǎn)C.橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).

當(dāng)n=1時(shí),寫(xiě)出線段BC上的整點(diǎn)的坐標(biāo);

yx0)的圖象在點(diǎn)A,C之間的部分與線段AB,BC所圍成的區(qū)域內(nèi)(包括邊界)恰有6個(gè)整點(diǎn),直接寫(xiě)出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy,對(duì)于點(diǎn)Pxpyp)和圖形G,設(shè)QxQyQ)是圖形G上任意一點(diǎn),|xpxQ|的最小值叫點(diǎn)P和圖形G的“水平距離”,|ypyQ|的最小值叫點(diǎn)P和圖形G的“豎直距離”,點(diǎn)P和圖形G的“水平距離”與“豎直距離”的最大值叫做點(diǎn)P和圖形G的“絕對(duì)距離”

例如:點(diǎn)P(﹣2,3)和半徑為1O,因?yàn)?/span>O上任一點(diǎn)QxQ,yQ)滿足﹣1xQ1,﹣1yQ1,點(diǎn)PO的“水平距離”為|2xQ|的最小值,即|2﹣(﹣1|=1,點(diǎn)PO的“豎直距離”為|3yQ|的最小值即|31|=2,因?yàn)?/span>21,所以點(diǎn)PO的“絕對(duì)距離”為2

已知O半徑為1,A2,),B4,1),C43

1直接寫(xiě)出點(diǎn)AO的“絕對(duì)距離”

已知D是△ABC邊上一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)DO的“絕對(duì)距離”為2時(shí),寫(xiě)出一個(gè)滿足條件的點(diǎn)D的坐標(biāo);

2)已知E是△ABC邊一個(gè)動(dòng)點(diǎn),直接寫(xiě)出點(diǎn)EO的“絕對(duì)距離”的最小值及相應(yīng)的點(diǎn)E的坐標(biāo)

3)已知PO上一個(gè)動(dòng)點(diǎn),△ABC沿直線AB平移過(guò)程中,直接寫(xiě)出點(diǎn)P與△ABC的“絕對(duì)距離”的最小值及相應(yīng)的點(diǎn)P和點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+(4a1)x4x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,且OC=2OB,點(diǎn)D為線段OB上一動(dòng)點(diǎn)(不與點(diǎn)B重合),過(guò)點(diǎn)D作矩形DEFH,點(diǎn)H、F在拋物線上,點(diǎn)Ex軸上.

1)求拋物線的解析式;

2)當(dāng)矩形DEFH的周長(zhǎng)最大時(shí),求矩形DEFH的面積;

3)在(2)的條件下,矩形DEFH不動(dòng),將拋物線沿著x軸向左平移m個(gè)單位,拋物線與矩形DEFH的邊交于點(diǎn)M、N,連接M、N.若MN恰好平分矩形DEFH的面積,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線ADBC邊于D.以AB上某一點(diǎn)O為圓心作⊙O,使⊙O經(jīng)過(guò)點(diǎn)A和點(diǎn)D

1)判斷直線BC⊙O的位置關(guān)系,并說(shuō)明理由;

2)若AC=3,∠B=30°

⊙O的半徑;

設(shè)⊙OAB邊的另一個(gè)交點(diǎn)為E,求線段BDBE與劣弧DE所圍成的陰影部分的圖形面積.(結(jié)果保留根號(hào)和π

查看答案和解析>>

同步練習(xí)冊(cè)答案