【題目】如圖,∠1+∠2=180°,∠3=∠B,試判斷∠AED與∠C的大小關(guān)系,并證明你的結(jié)論.
∠C與∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(鄰補(bǔ)角定義)
∴∠2=___(___),
∴AB∥EF(___)
∵∠3=___(___)
又∠B=∠3(已知)
∴∠B=___(等量代換)
∴DE∥BC(___)
∴∠C=∠AED(___).
【答案】∠DFE;同角的補(bǔ)角相等;內(nèi)錯(cuò)角相等,兩直線平行;∠ADE;兩直線平行,內(nèi)錯(cuò)角相等;∠ADE;同位角相等,兩直線平行;兩直線平行,同位角相等.
【解析】
首先求出∠2=∠DFE,兩直線平行可判斷出AB∥EF,進(jìn)而得到∠B=∠ADE,可判斷出DE∥BC,由平行線的性質(zhì)即可得出答案.
∠C與∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(鄰補(bǔ)角定義),
∴∠2=∠DFE(同角的補(bǔ)角相等),
∴AB∥EF(內(nèi)錯(cuò)角相等,兩直線平行),
∴∠3=∠ADE(兩直線平行,內(nèi)錯(cuò)角相等),
又∠B=∠3(已知),
∴∠B=∠ADE(等量代換),
∴DE∥BC(同位角相等,兩直線平行),
∴∠C=∠AED(兩直線平行,同位角相等).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的弦,OP⊥OA交AB于點(diǎn)P,過點(diǎn)B的直線交OP的延長線于點(diǎn)C,且CP=CB.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為,OP=1,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,A(-1,5)、B(-1,0)、C(-4,3)
(1)直接寫出△ABC的面積為_________
(2)在圖形中作出△ABC關(guān)于x軸的對稱圖形△A1B1C1
(3)若△DAB與△CAB全等(D點(diǎn)不與C點(diǎn)重合),則點(diǎn)D的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD 中,對角線 AC 與 BD 相交于點(diǎn) O ,點(diǎn) E , F 分別為 OB , OD 的中點(diǎn),延長 AE 至 G ,使 EG =AE ,連接 CG .
(1)求證: △ABE≌△CDF ;
(2)當(dāng) AB 與 AC 滿足什么數(shù)量關(guān)系時(shí),四邊形 EGCF 是矩形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形AOBC中,OB=6,OA=4,分別以O(shè)B,OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標(biāo)系.F是邊BC上一點(diǎn)(不與B、C兩點(diǎn)重合),過點(diǎn)F的反比例函數(shù)y=(k>0)圖象與AC邊交于點(diǎn)E.
(1)請用k的表示點(diǎn)E,F(xiàn)的坐標(biāo);
(2)若△OEF的面積為9,求反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1.將三角板中30°角的頂點(diǎn)D放在AB邊上移動,使這個(gè)30°角的兩邊分別與△ABC的邊AC,BC相交于點(diǎn)E,F,且使DE始終與AB垂直.
(1)△BDF是什么三角形?請說明理由;
(2)設(shè)AD=x,CF=y,試求y與x之間的函數(shù)關(guān)系式;(不用寫出自變量x的取值范圍)
(3)當(dāng)移動點(diǎn)D使EF∥AB時(shí),求AD的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y= (m為常數(shù),且m≠5).
(1)若在其圖象的每個(gè)分支上,y隨x的增大而增大,求m的取值范圍;
(2)若其圖象與一次函數(shù)y=-x+1的圖象的一個(gè)交點(diǎn)的縱坐標(biāo)是3,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四邊形ABCD中,∠BAD=90°,AD=3cm,AB=4 cm,BC=5 cm, CD=6 cm.
(1)連結(jié)BD,判斷△CBD的形狀;
(2)求四邊形ABCD的面積S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某批發(fā)商以每件50元的價(jià)格購進(jìn)800件T恤,第一個(gè)月以單價(jià)80元銷售,售出了200件;第二個(gè)月如果單價(jià)不變,預(yù)計(jì)仍可售出200件,批發(fā)商為增加銷售量,決定降價(jià)銷售,根據(jù)市場調(diào)查,單價(jià)每降低1元,可多售出10件,但最低單價(jià)應(yīng)高于購進(jìn)的價(jià)格;第二個(gè)月結(jié)束后,批發(fā)商將對剩余的T恤一次性清倉銷售,清倉是單價(jià)為40元.如果批發(fā)商希望通過銷售這批T恤獲利9000元,那么第二個(gè)月的單價(jià)應(yīng)是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com