【題目】如圖,點(diǎn)B、D、C、F在一條直線上,且BD=FC,AB=EF.
(1)請你只添加一個條件(不再加輔助線),使△ABC≌△EFD,你添加的條件是 ;
(2)添加了條件后,證明△ABC≌△EFD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖,∥,,,求的度數(shù).
小明的思路是過點(diǎn)作∥,通過平行線的性質(zhì)來求.
(1)按照小明的思路,求的度數(shù);
(2)問題遷移:如圖,∥,點(diǎn)在射線上運(yùn)動,記,,當(dāng)點(diǎn)在、兩點(diǎn)之間運(yùn)動時,問與、之間有何數(shù)量關(guān)系?請說明理由;
(3)在(2)的條件下,如果點(diǎn)不在、兩點(diǎn)之間運(yùn)動時(點(diǎn)與點(diǎn)、、三點(diǎn)不重合),請直接寫出與、之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè), ,……, ,(n為正整數(shù))
(1)試說明是8的倍數(shù);
(2)若△ABC的三條邊長分別為、、(為正整數(shù))
①求的取值范圍.
②是否存在這樣的,使得△ABC的周長為一個完全平方數(shù),若存在,試舉出一例,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與坐標(biāo)軸交于A,B,C三點(diǎn),其中點(diǎn)A的坐標(biāo)為(﹣3,0),點(diǎn)B的坐標(biāo)為(4,0),連接AC,BC.動點(diǎn)P從點(diǎn)A出發(fā),在線段AC上以每秒1個單位長度的速度向點(diǎn)C作勻速運(yùn)動;同時,動點(diǎn)Q從點(diǎn)O出發(fā),在線段OB上以每秒1個單位長度的速度向點(diǎn)B作勻速運(yùn)動,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)隨之停止運(yùn)動,設(shè)運(yùn)動時間為t秒.連接PQ.
(1)填空:b= ,c= ;
(2)在點(diǎn)P,Q運(yùn)動過程中,△APQ可能是直角三角形嗎?請說明理由;
(3)在x軸下方,該二次函數(shù)的圖象上是否存在點(diǎn)M,使△PQM是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,請求出運(yùn)動時間t;若不存在,請說明理由;
(4)如圖②,點(diǎn)N的坐標(biāo)為(﹣,0),線段PQ的中點(diǎn)為H,連接NH,當(dāng)點(diǎn)Q關(guān)于直線NH的對稱點(diǎn)Q′恰好落在線段BC上時,請直接寫出點(diǎn)Q′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E點(diǎn)為DF上的點(diǎn),B為AC上的點(diǎn),∠1=∠2,∠C=∠D,那么DF∥AC,請完成它成立的理由
∵∠1=∠2 ( )
∠2=∠3 ,∠1=∠4( )
∴∠3=∠4( )
∴_______∥_______ ( )
∴∠C=∠ABD( )
∵∠C=∠D( )
∴∠D=∠ABD( )
∴DF∥AC( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠BAC=40°,把△ABC繞著點(diǎn)A順時針旋轉(zhuǎn),使得點(diǎn)B與CA的延長線上的點(diǎn)D重合,連接CE.
(1)△ABC旋轉(zhuǎn)了多少度?
(2)連接CE,試判斷△AEC的形狀.
(3)若∠ACE=20°,求∠AEC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com