【題目】問(wèn)題情景:如圖1,在同一平面內(nèi),點(diǎn)和點(diǎn)分別位于一塊直角三角板的兩條直角邊,上,點(diǎn)與點(diǎn)在直線的同側(cè),若點(diǎn)在內(nèi)部,試問(wèn),與的大小是否滿足某種確定的數(shù)量關(guān)系?
(1)特殊探究:若,則_________度,________度,_________度;
(2)類比探索:請(qǐng)猜想與的關(guān)系,并說(shuō)明理由;
(3)類比延伸:改變點(diǎn)的位置,使點(diǎn)在外,其它條件都不變,判斷(2)中的結(jié)論是否仍然成立?若成立,請(qǐng)說(shuō)明理由;若不成立,請(qǐng)直接寫(xiě)出,與滿足的數(shù)量關(guān)系式.
【答案】(1)125,90,35;(2)∠ABP+∠ACP=90°-∠A,證明見(jiàn)解析;(3)結(jié)論不成立.∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP - ∠ABP =90°-∠A.
【解析】
(1)根據(jù)三角形內(nèi)角和即可得出∠ABC+∠ACB,∠PBC+∠PCB,然后即可得出∠ABP+∠ACP;
(2)根據(jù)三角形內(nèi)角和定理進(jìn)行等量轉(zhuǎn)換,即可得出∠ABP+∠ACP=90°-∠A;
(3)按照(2)中同樣的方法進(jìn)行等量轉(zhuǎn)換,求解即可判定.
(1)∠ABC+∠ACB=180°-∠A=180°-55°=125度,∠PBC+∠PCB=180°-∠P=180°-90°=90度,
∠ABP+∠ACP=∠ABC+∠ACB -(∠PBC+∠PCB)=125°-90°=35度;
(2)猜想:∠ABP+∠ACP=90°-∠A;
證明:在△ABC中,∠ABC+∠ACB=180°-∠A,
∵∠ABC=∠ABP+∠PBC,∠ACB=∠ACP+∠PCB,
∴(∠ABP+∠PBC)+(∠ACP+∠PCB)=180°-∠A,
∴(∠ABP+∠ACP)+(∠PBC+∠PCB)=180°-∠A,
又∵在Rt△PBC中,∠P=90°,
∴∠PBC+∠PCB=90°,
∴(∠ABP+∠ACP)+90°=180°-∠A,
∴∠ABP+∠ACP=90°-∠A.
(3)判斷:(2)中的結(jié)論不成立.
證明:在△ABC中,∠ABC+∠ACB=180°-∠A,
∵∠ABC=∠PBC-∠ABP,∠ACB=∠PCB-∠ACP,
∴(∠PBC+∠PCB)-(∠ABP+∠ACP)=180°-∠A,
又∵在Rt△PBC中,∠P=90°,
∴∠PBC+∠PCB=90°,
∴∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°
或∠ACP - ∠ABP =90°-∠A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以斜邊AB上一點(diǎn)O為圓心,OB為半徑作⊙O,交AC于點(diǎn)E,交AB于點(diǎn)D,且∠BEC=∠BDE.
(1)求證:AC是⊙O的切線;
(2)連接OC交BE于點(diǎn)F,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線AB分別與x軸、y軸交于點(diǎn)B,A,與反比例函數(shù)的圖象分別交于點(diǎn)C,D,CE⊥x軸于點(diǎn)E,tan∠ABO=,OB=4,OE=2.
(1)求該反比例函數(shù)的解析式;
(2)求三角形CDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某小學(xué)“演講大賽”選拔賽初賽中,甲、乙、丙三位評(píng)委對(duì)小選手的綜合表現(xiàn),分別給出“待定”(用字母W表示)或“通過(guò)”(用字母P表示)的結(jié)論.
(1)請(qǐng)用樹(shù)狀圖表示出三位評(píng)委給小選手琪琪的所有可能的結(jié)論;
(2)對(duì)于小選手琪琪,只有甲、乙兩位評(píng)委給出相同結(jié)論的概率是多少?
(3)比賽規(guī)定,三位評(píng)委中至少有兩位給出“通過(guò)”的結(jié)論,則小選手可入圍進(jìn)入復(fù)賽,問(wèn)琪琪進(jìn)入復(fù)賽的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,3),點(diǎn)B(,0),連接AB,若對(duì)于平面內(nèi)一點(diǎn)C,當(dāng)△ABC是以AB為腰的等腰三角形時(shí),稱點(diǎn)C是線段AB的“等長(zhǎng)點(diǎn)”.
(1)在點(diǎn)C1(﹣2,3+2),點(diǎn)C2(0,﹣2),點(diǎn)C3(3+,﹣)中,線段AB的“等長(zhǎng)點(diǎn)”是點(diǎn)________;
(2)若點(diǎn)D(m,n)是線段AB的“等長(zhǎng)點(diǎn)”,且∠DAB=60°,求點(diǎn)D的坐標(biāo);
(3)若直線y=kx+3k上至少存在一個(gè)線段AB的“等長(zhǎng)點(diǎn)”,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E是DC邊上的點(diǎn),連接BE,將△BCE繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)90°得到△DCF,連接EF.若∠EFD=15°,則∠CDF的度數(shù)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖AM∥BN,C是BN上一點(diǎn), BD平分∠ABN且過(guò)AC的中點(diǎn)O,交AM于點(diǎn)D,DE⊥BD,交BN于點(diǎn)E.
(1)求證:△ADO≌△CBO.
(2)求證:四邊形ABCD是菱形.
(3)若DE = AB = 2,求菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是宜賓市某周內(nèi)最高氣溫的折線統(tǒng)計(jì)圖,關(guān)于這7天的日氣溫的說(shuō)法,錯(cuò)誤的是( )
A.最高氣溫是30℃
B.最低氣溫是20℃
C.出現(xiàn)頻率最高的是28℃
D.平均數(shù)是26℃
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰直角中,,為的中點(diǎn),,為上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),的最小值為____
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com