【題目】如圖,在□ABCD中,以點A為圓心,以任意長為半徑畫圓弧,分別交邊AD、AB于點M、N,再分別以點M、N為圓心,以大于長為半徑畫圓弧,兩弧交于點P,作射線AP交邊CD于點E,過點E作EF∥AD交AB于點F.若AB=5,CE=2,則四邊形ADEF的周長為______.
科目:初中數(shù)學 來源: 題型:
【題目】作圖題:如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,1),B(﹣1,4),C(﹣3,2).
(1)畫出△ABC關(guān)于y軸對稱的圖形△A1B1C1,并直接寫出C1點坐標;
(2)以原點O為位似中心,位似比為1:2,在y軸的左側(cè),畫出△ABC放大后的圖形△A2B2C2,并直接寫出C2點坐標;
(3)如果點D(a,b)在線段AB上,請直接寫出經(jīng)過(2)的變化后D的對應(yīng)點D2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,AB=AD,∠C=120°,點E在弧上.
(1)求∠E的度數(shù);
(2)連接OD、OE,當∠DOE=90°時,AE恰好為⊙O的內(nèi)接正n邊形的一邊,求n的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點,其中A點坐標為(﹣3,0),與y軸交于點C,點D(﹣2,﹣3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點P,求出PA+PD的最小值;
(3)點G拋物線上的動點,在x軸上是否存在點E,使B、D、E、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的E點坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是我國東漢初年編訂的一部數(shù)學經(jīng)典著作在它的“方程”一章里,一次方程組是由算籌布置而成的《九章算術(shù)》中的算籌圖是豎排的,現(xiàn)在我們把它改為橫排,如圖1、圖2圖中各行從左到右列出的算籌數(shù)分別表示未知數(shù)的系數(shù)與相應(yīng)的常數(shù)項把圖1所示的算籌圖用我們現(xiàn)在所熟悉的方程組形式表述出來,就是類似地,圖2所示的算籌圖我們可以表述為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了調(diào)查學生對垃圾分類及投放知識的了解情況,從甲、乙兩校各隨機抽取40名學生進行了相關(guān)知識測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進行了整理、描述和分析.下面給出了部分信息.
a.甲、乙兩校40名學生成績的頻數(shù)分布統(tǒng)計表如下:
(說明:成績80分及以上為優(yōu)秀,分為良好,分為合格,60分以下為不合格)
b.甲校成績在這一組的是:70707071727373737475767778
c.甲、乙兩校成績的平均分、中位數(shù)、眾數(shù)如下:
學校 | 平均分(單位:分) | 中位數(shù)(單位:分) | 眾數(shù)(單位:分) |
甲 | 74.2 | 85 | |
乙 | 73.5 | 76 | 84 |
根據(jù)以上信息,回答下列問題:
(1)上表中n的值為_____.
(2)在此次測試中,某學生的成績是74分,在他所屬學校排在前20名,由表中數(shù)據(jù)可知該學生是___校的學生(填“甲”或“乙”),請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0, )三點.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標;
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構(gòu)成的四邊形為平行四邊形?若存在,求點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料題
點A、B在數(shù)軸上分別表示實數(shù)、,A、B兩點之間的距離記作AB. 當A、B兩點中有一點為原點時,不妨設(shè)A點在原點。如下圖①所示,則AB =OB ==.
當A、B兩點都不在原點時:
(1)上圖②所示,點A、B都在原點的右邊,不妨設(shè)點A在點B的左側(cè),則AB=OB-OA====
(2)上圖③所示,點A、B都在原點的左邊,不妨設(shè)點A在點B的右側(cè),則AB=OB-OA====
(3)如上圖④所示,點A、B分別在原點的兩邊,不妨設(shè)點A在點O的右側(cè),則AB=OB+OA===
回答下列問題:
①綜上所述,數(shù)軸上A、B兩點之間的距離AB= .
②數(shù)軸上表示2和的兩點A和B之間的距離AB= .
③數(shù)軸上表示x和的兩點A和B之間的距離AB= ,如果AB=2,則x的值為 .
④若代數(shù)式有最小值,則最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊的邊長為,點從點出發(fā)沿向點運動,點從點出發(fā)沿的延長線向右運動,已知點,都以的速度同時開始運動,運動過程中與相交于點,點運動到點后兩點同時停止運動.
(1)當是直角三角形時,求,兩點運動的時間;
(2)求證:在運動過程中,點始終是線段的中點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com