【題目】如圖,在⊙O中,弦AD,BC相交于點(diǎn)E,連接OE,已知AD=BC,AD⊥CB.
(1)求證:AB=CD;
(2)如果⊙O的直徑為10,DE=1,求AE的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)AE=7.
【解析】
(1)欲證明AB=CD,只需證得.
(2)如圖,過(guò)O作OF⊥AD于點(diǎn)F,作OG⊥BC于點(diǎn)G,連接OA、OC.構(gòu)建正方形EFOG,利用正方形的性質(zhì),垂徑定理和勾股定理來(lái)求AF的長(zhǎng)度,則易求AE的長(zhǎng)度.
(1)證明:如圖,∵AD=BC,
∴= ,
∴﹣ =﹣,即=,
∴AB=CD;
(2)如圖,過(guò) O 作 OF⊥AD 于點(diǎn) F,作 OG⊥BC 于點(diǎn) G,連接 OA、OC.
則 AF=FD,BG=CG.
∵AD=BC,
∴AF=CG.
在 Rt△AOF 與 Rt△COG 中,,
∴Rt△AOF≌Rt△COG(HL),
∴OF=OG,
∴四邊形 OFEG 是正方形,
∴OF=EF.
設(shè) OF=EF=x,則 AF=FD=x+1,
在直角△OAF 中.由勾股定理得到:x2+(x+1)2=52, 解得 x=5.
則 AF=3+1=4,即 AE=AF+3=7.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小杰想用6個(gè)除顏色外均相同的球設(shè)計(jì)一個(gè)游戲,下面是他設(shè)計(jì)的4個(gè)游戲方案.不成功的是( )
A. 摸到黃球的概率為,紅球的概率為
B. 摸到黃、紅、白球的概率都為
C. 摸到黃球的概率為,紅球的概率為,白球的概率為
D. 摸到黃球的概率為,摸到紅球、白球的概率都是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店欲購(gòu)進(jìn)A、B兩種商品,若購(gòu)進(jìn)A種商品5件和B種商品4件需300元;若購(gòu)進(jìn)A種商品6件和B種商品8件需440元;
(1)求A、B兩種商品每件的進(jìn)價(jià)分別為多少元?
(2)商店準(zhǔn)備用不超過(guò)1625元購(gòu)進(jìn)50件這兩種商品,求購(gòu)進(jìn)A種商品最多是多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了節(jié)省材料,某水產(chǎn)養(yǎng)殖戶(hù)利用水庫(kù)的岸堤(岸堤足夠長(zhǎng))為一邊,用總長(zhǎng)為80米的圍網(wǎng)在水庫(kù)中圍成發(fā)如圖所示①②③的三塊矩形區(qū)域,而且這三塊矩形區(qū)域面積相等.已知矩形區(qū)域ABCD的面積為30m2,設(shè)BC的長(zhǎng)度為xm,所列方程為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖拋物線(xiàn)y=x2+bx﹣c經(jīng)過(guò)直線(xiàn)y=x﹣3與坐標(biāo)軸的兩個(gè)交點(diǎn)A,B,此拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)為C,拋物線(xiàn)的頂點(diǎn)為D.
(1)求此拋物線(xiàn)的解析式;
(2)求S△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫(xiě)成另一個(gè)式子的平方,如:3+2,善于思考的小明進(jìn)行了以下探索:
設(shè)a+b(其中a、b、m、n均為整數(shù)),
則有:a+b,∴a=m2+2n2,b=2mn,這樣小明就找到了一種把類(lèi)似a+b的式子化為平方式的方法.
請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:
(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b,用含m、n的式子分別表示a、b得:a= ,b= ;
(2)利用所探索的結(jié)論,用完全平方式表示出:7+4= .
(3)請(qǐng)化簡(jiǎn):.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等邊邊長(zhǎng)為,、分別為和上的點(diǎn),且,則________度;若點(diǎn)為的三等分點(diǎn),則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是矩形ABCD的邊AD的中點(diǎn),且BE⊥AC于點(diǎn)F,則下列結(jié)論中錯(cuò)誤的是( 。
A. AF=CF B. ∠DCF=∠DFC
C. 圖中與△AEF相似的三角形共有5個(gè) D. tan∠CAD=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在等邊△ABC中,點(diǎn)D.E分別在邊BC,AB上,且BD=AE,AD與CE交于點(diǎn)F.
(1)求證:AD=CE
(2)求∠DFC的度數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com