【題目】如圖,在平面直角坐標系中,已知Q(﹣13),A0,4),點Px軸上一動點,以QP為腰作等腰RtQPH,當OH+AH最小時,點H的橫坐標為_____

【答案】1.5

【解析】

QNHM垂直于x軸于NM,則△QNP≌△PMH,推出PNHM,QNPM,設OPx,得Hx3,x1),求出點H的運動軌跡即可解決問題.

解:作QN、HM垂直于x軸于N、M

Rt△QPH是等腰三角形,

QP=PH

QNP≌△PMH

PNHM,QNPM,設OPx,得Hx+3x+1),

H點在直線yx-2上運動,

H點在直線HG上運動,

A點關于直線yx-2的對稱點F,

OF交于點E

H點與E點重合時OH+AH最小,

令函數(shù)yx-2,x=0,y=-2, 令函數(shù)yx-2=0,x=2,

G0,-2),B2,0

k=1,

∠HBM=45°

可得∠AMN=45°,則∠FAG=45°

根據(jù)對稱性可知AG=GF,

∠AFG=45°

GFAG

∴GF=6

F6,2

設直線OF解析式為y=k2x

F6,2)代入得2=6k2,

k2=-

∴直線OF解析式為y=- x

聯(lián)立函數(shù)yx-2,解得x=1.5,y=0.5

E點的橫坐標為1.5,

故答案為1.5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+6經(jīng)過點A(﹣20),B4,0)兩點,與y軸交于點C,點D是拋物線上一個動點,設點D的橫坐標為m1m4)連接BC,DB,DC

1)求拋物線的函數(shù)解析式;

2)△BCD的面積是否存在最大值,若存在,求此時點D的坐標;若不存在,說明理由;

3)在(2)的條件下,若點Mx軸上一動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,DM,N為頂點的四邊形是平行四邊形.若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在ABC中,ABAC,點D,E分別在邊AB,AC上,且DEBC,若AD2,AE,則的值是   ;

2)如圖2,在(1)的條件下,將ADE繞點A逆時針方向旋轉一定的角度,連接CEBD,的值變化嗎?若變化,請說明理由;若不變化,請求出不變的值;

3)如圖3,在四邊形ABCD中,ACBC于點C,∠BAC=∠ADCθ,且tanθ,當CD6,AD3時,請直接寫出線段BD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)用配方法解方程:x24x+20;

2)如圖,在平面直角坐標系中,△ABC的頂點均在格點上,將△ABC繞原點O逆時針方向旋轉90°得到△A1B1C1.請作出△A1B1C1,寫出各頂點的坐標,并計算△A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠A的平分線交BCD,EAB上一點,DE=DC,以D為圓心,以DB的長為半徑畫圓.

求證:(1AC⊙D的切線;(2AB+EB=AC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長,交AD于點E,交BA的延長線于點F

1)求證:APD≌△CPD;

2)求證:APE∽△FPA;

3)若PE2,EF6,求PC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中華文明,源遠流長;中華漢字,寓意深廣.為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學舉行“漢字聽寫”比賽,賽后整理參賽學生的成績,將學生的成績分為A,B,C,D四個等級,并將結果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,但均不完整.

請你根據(jù)統(tǒng)計圖解答下列問題:

1)參加比賽的學生共有____名;

2)在扇形統(tǒng)計圖中,m的值為____,表示“D等級”的扇形的圓心角為____度;

3)組委會決定從本次比賽獲得A等級的學生中,選出2名去參加全市中學生“漢字聽寫”大賽.已知A等級學生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學生恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AB=12,P是邊AB上一點,把PBC沿直線PC折疊,頂點B的對應點是點G,過點BBECG,垂足為E且在AD上,BEPC于點F.

(1)如圖1,若點EAD的中點,求證:AEB≌△DEC;

(2)如圖2,①求證:BP=BF;

②當AD=25,且AE<DE時,求cosPCB的值;

③當BP=9時,求BEEF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中國古代三國時期的數(shù)學家趙爽,創(chuàng)作了一幅勾股弦方圖,通過數(shù)形結合,給出了勾股定理的詳細證明如圖,在勾股弦方圖中,以弦為邊長得到的正方形ABCD是由4個全等的直角三角形和中間的小正方形組成,這一圖形被稱作趙爽弦圖張?zhí)焱瑢W要用細塑料棒制作趙爽弦圖,若正方形ABCD與正方形EFCH的面積分別為16949,則所用細塑料棒的長度為______

查看答案和解析>>

同步練習冊答案