【題目】在平面直角坐標(biāo)系中,為原點(diǎn),已知直線軸交于點(diǎn),與軸交于點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,如圖①.

1)點(diǎn)的坐標(biāo)為________,點(diǎn)的坐標(biāo)為________,點(diǎn)的坐標(biāo)為________,直線的解析式為________

2)點(diǎn)軸上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),過(guò)點(diǎn)軸的垂線,交直線于點(diǎn).交直線于點(diǎn)(圖②).

①如圖②,當(dāng)點(diǎn)軸的正半軸上時(shí),若的面積為,求點(diǎn)的坐標(biāo);

②連接,若,求點(diǎn)的坐標(biāo).

【答案】1,;(2)①;②點(diǎn)P的坐標(biāo)為(

【解析】

1)依據(jù)坐標(biāo)軸上點(diǎn)的坐標(biāo)特點(diǎn)可求得A、B的坐標(biāo),然后利用對(duì)稱性可得到點(diǎn)C的坐標(biāo),接下來(lái),利用待定系數(shù)法可求得BC的解析式;

2)過(guò)點(diǎn)BBDPQ,垂足為D,先用含x的式子表示出PQ、BD的長(zhǎng),再用三角形面積公式進(jìn)行計(jì)算即可;

3)分情況討論:①當(dāng)點(diǎn)軸的正半軸上時(shí),先證明∠BAO=∠OBM,可得,根據(jù)相似三角形的性質(zhì)求出OM的長(zhǎng),即可得點(diǎn)P的橫坐標(biāo),然后將點(diǎn)P的橫坐標(biāo)代入函數(shù)解析式可求得點(diǎn)P的坐標(biāo);②當(dāng)點(diǎn)軸的負(fù)半軸上時(shí),同理求解即可.

解:(1)對(duì)于,由得:,

,

得:,解得,

,

∵點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,

,

設(shè)直線的函數(shù)解析式為,

則:,解得

∴直線BC的函數(shù)解析式為,

故答案為:

2)如圖所示:過(guò)點(diǎn),垂足為,

設(shè),則,,

,

的面積為,

解得:(負(fù)值舍去),

;

3)分情況討論:

①如圖所示:當(dāng)點(diǎn)軸的正半軸上時(shí).

,

,

,

,

,即,

代入得:,

②如圖所示:當(dāng)點(diǎn)軸的負(fù)半軸上時(shí),

同理可得:

代入得:,

,

綜上所述,點(diǎn)P的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】商貿(mào)公司購(gòu)進(jìn)某種水果的成本為20元/kg,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),這種水果在未來(lái)48天的銷售單價(jià)p(元/kg)與時(shí)間t(天)之間的函數(shù)關(guān)系式為p=,且其日銷售量y(kg)與時(shí)間t(天)的關(guān)系如表:

時(shí)間t(天)

1

3

6

10

20

40

日銷售量y(kg)

118

114

108

100

80

40

(1)已知y與t之間的變化規(guī)律符合一次函數(shù)關(guān)系,試求在第30天的日銷售量是多少?

(2)問(wèn)哪一天的銷售利潤(rùn)最大?最大日銷售利潤(rùn)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,ADBC,ABAC,點(diǎn)EBC的中點(diǎn),AEBD交于點(diǎn)F,且FAE的中點(diǎn).

(Ⅰ)求證:四邊形AECD是菱形;(Ⅱ)若AC4,AB5,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,甲乙兩個(gè)轉(zhuǎn)盤被等分成五個(gè)扇形區(qū)域,上面分別標(biāo)有數(shù)字,同時(shí)自由轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,轉(zhuǎn)盤停止后,連個(gè)指針同時(shí)落在偶數(shù)上的概率是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】幾何學(xué)的產(chǎn)生,源于人們對(duì)土地面積測(cè)量的需要,以面積早就成為人們認(rèn)識(shí)圖形性質(zhì)與幾何證明的有效工具,可以說(shuō)幾何學(xué)從一開始便與面積結(jié)下了不解之緣.我們已經(jīng)掌握了平行四邊形面積的求法,但是一般四邊形的面積往往不易求得,那么我們能否將其轉(zhuǎn)化為平行四邊形來(lái)求呢?

1)方法1:如圖①,連接四邊形的對(duì)角線,分別過(guò)四邊形的四個(gè)頂點(diǎn)作對(duì)角線的平行線,所作四條線相交形成四邊形,易證四邊形是平行四邊形.請(qǐng)直接寫出S四邊形ABCD之間的關(guān)系:_______________

方法2:如圖②,取四邊形四邊的中點(diǎn),,,連接,,,,

2)求證:四邊形是平行四邊形;

3)請(qǐng)直接寫出S四邊形ABCD之間的關(guān)系:_____________

方法3:如圖③,取四邊形四邊的中點(diǎn),,,連接,交于點(diǎn).先將四邊形繞點(diǎn)旋轉(zhuǎn)得到四邊形,易得點(diǎn),在同一直線上;再將四邊形繞點(diǎn)旋轉(zhuǎn)得到四邊形,易得點(diǎn),在同一直線上;最后將四邊形沿方向平移,使點(diǎn)與點(diǎn)重合,得到四邊形;

4)由旋轉(zhuǎn)、平移可得_________,_________,所以,所以點(diǎn),,在同一直線上,同理,點(diǎn),,也在同一點(diǎn)線上,所以我們拼接成的圖形是一個(gè)四邊形.

5)求證:四邊形是平行四邊形.

(注意:請(qǐng)考生在下面2題中任選一題作答如果多做,則按所做的第一題計(jì)分)

6)應(yīng)用1:如圖④,在四邊形中,對(duì)角線交于點(diǎn),,,則S四邊形ABCD=

7)應(yīng)用2:如圖⑤,在四邊形中,點(diǎn),,,分別是,,的中點(diǎn),連接,交于點(diǎn),,,,則S四邊形ABCD=___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲班56人,其中身高在160厘米以上的男同學(xué)10人,身高在160厘米以上的女同學(xué)3人,乙班80人,其中身高在160厘米以上的男同學(xué)20人,身高在160厘米以上的女同學(xué)8人.如果想在兩個(gè)班的160厘米以上的女生中抽出一個(gè)作為旗手,在哪個(gè)班成功的機(jī)會(huì)大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,內(nèi)一點(diǎn),過(guò)點(diǎn)分別作的平行線,交的四邊于、四點(diǎn),若面積為6,面積為4,則的面積為(  )

A.B.C.1D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一塊三角形空地上種草皮綠化,已知AB20米,AC30米,∠A150°,草皮的售價(jià)為a/2,則購(gòu)買草皮至少需要( 。

A. 450a B. 225a C. 150a D. 300a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù) yax2+x+c 的圖象與 y 軸交于點(diǎn) A(0,4),

x 軸交于點(diǎn) BC,點(diǎn) C 坐標(biāo)為(8,0),連接 ABAC

(1)請(qǐng)直接寫出二次函數(shù) yax2+x+c 的表達(dá)式;

(2)判斷ABC 的形狀,并說(shuō)明理由;

(3)若點(diǎn) N x 軸上運(yùn)動(dòng),當(dāng)以點(diǎn) A、NC 為頂點(diǎn)的三角形是等腰三角形時(shí), 請(qǐng)直接寫出此時(shí)點(diǎn) N 的坐標(biāo);

(4)若點(diǎn) N 在線段 BC 上運(yùn)動(dòng)不與點(diǎn) BC 重合,過(guò)點(diǎn) N NMAC,交AB 于點(diǎn) M,當(dāng)AMN 面積最大時(shí),求此時(shí)點(diǎn) N 的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案