【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;平移△ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,-4),畫(huà)出平移后對(duì)應(yīng)的△A2B2C2;
(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2 , 請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo);
(3)在x軸上有一點(diǎn)P,使得PA+PB的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
【答案】
(1)解:畫(huà)出△A1B1C與△A2B2C2如圖
(2)解:旋轉(zhuǎn)中心的坐標(biāo)為( ,-1)
(3)解:點(diǎn)P的坐標(biāo)為(-2,0)
【解析】(1)延長(zhǎng)AC到A1 , 使得AC=A1C,延長(zhǎng)BC到B1 , 使得BC=B1C,利用點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,-4),得出圖象平移單位,即可得出△A2B2C2。
(2)根據(jù)△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2 , 根據(jù)旋轉(zhuǎn)的性質(zhì)可找出旋轉(zhuǎn)中心。
(3)根據(jù)B點(diǎn)關(guān)于x軸對(duì)稱點(diǎn)為A2 , 連接AA2 , 交x軸于點(diǎn)P,再利用相似三角形的性質(zhì)求出P點(diǎn)坐標(biāo)即可。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CB∥OA,∠C=∠OAB=124°,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF,∠OEC=∠COB,則∠OEC=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,的直徑,,是的兩條切線,切于,交于,設(shè),,.
(1)求與的函數(shù)關(guān)系式;
(2)若,是的兩實(shí)根,求,的值;
(3)在(2)的前提下,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若S△ABC=1分別倍長(zhǎng)(延長(zhǎng)一倍)AB、BC、CA得到再分別延長(zhǎng)得到……,按此規(guī)律,延長(zhǎng)次后得到的的面積為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】誰(shuí)更合理?
某種牙膏上部圓的直徑為2.6cm,下部底邊的長(zhǎng)為4cm,如圖,現(xiàn)要制作長(zhǎng)方體的牙膏盒,牙膏盒底面是正方形,在手工課上,小明、小亮、小麗、小芳制作的牙膏盒的高度都一樣,且高度符合要求.不同的是底面正方形的邊長(zhǎng),他們制作的邊長(zhǎng)如下表:
制作者 | 小明 | 小亮 | 小麗 | 小芳 |
正方形的邊長(zhǎng) | 2cm | 2.6cm | 3cm | 3.4cm |
(1)這4位同學(xué)制作的盒子都能裝下這種牙膏嗎?()
(2)若你是牙膏廠的廠長(zhǎng),從節(jié)約材料又方便取放牙膏的角度來(lái)看,你認(rèn)為誰(shuí)的制作更合理?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖OA平分∠BAC,∠1=∠2.
求證:AO⊥BC.
同學(xué)甲說(shuō):要作輔助線;
同學(xué)乙說(shuō):要應(yīng)用角平分線性質(zhì)定理來(lái)解決:
同學(xué)丙說(shuō):要應(yīng)用等腰三角形“三線合一”的性質(zhì)定理來(lái)解決.
請(qǐng)你結(jié)合同學(xué)們的討論寫出證明過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2﹣2x+3的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)點(diǎn)M(m,0)為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過(guò)點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過(guò)點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過(guò)點(diǎn)Q作QN⊥x軸于點(diǎn)N,可得矩形PQNM.如圖,點(diǎn)P在點(diǎn)Q左邊,試用含m的式子表示矩形PQNM的周長(zhǎng);
(3)當(dāng)矩形PQNM的周長(zhǎng)最大時(shí),m的值是多少?并求出此時(shí)的△AEM的面積;
(4)在(3)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ,過(guò)拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若FG= DQ,求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的頂點(diǎn)都在方格紙的格點(diǎn)上,將△ABC向右平移4格,再向上平移2格,其中每個(gè)格子的邊長(zhǎng)為1個(gè)單位長(zhǎng)度。
⑴在圖中畫(huà)出平移后的△A′B′C′;
⑵若連接AA′、CC′,則這兩條線段的關(guān)系是 ;
⑶作△ABC的高AD,并求△ABC的面積。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com