已知:的高AD所在直線與高BE所在直線相交于點(diǎn)F

   (1)如圖l,若為銳角三角形,且,過點(diǎn)F,交直線AB于點(diǎn)G,求證:;

    (2)如圖 2,若,過點(diǎn)F,交直線AB于點(diǎn)G,則FG、DC、AD之間滿足的數(shù)量關(guān)系是                 

(3)在(2)的條件下,若,,將一個(gè)45°角的頂點(diǎn)與點(diǎn)B重合并繞點(diǎn)B旋轉(zhuǎn),這個(gè)角的兩邊分別交線段FGM、N兩點(diǎn)(如圖3),連接CF,線段CF分別與線段BM、線段BN相交于P、Q兩點(diǎn),若,求線段PQ的長(zhǎng).

                  

(1)證明:,

,

(2)

(3)如圖,

 


,

,

,

,由(2)知:,

為等腰直角三角形.

分別過于點(diǎn),于點(diǎn)

四邊形為矩形,,

,

,

,,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、已知:△ABC的高AD所在直線與高BE所在直線相交于點(diǎn)F.
(1)如圖1,若△ABC為銳角三角形,且∠ABC=45°,過點(diǎn)F作FG∥BC,交直線AB于點(diǎn)G,求證:FG+DC=AD;
(2)如圖2,若∠ABC=135°,過點(diǎn)F作FG∥BC,交直線AB于點(diǎn)G,則FG、DC、AD之間滿足的數(shù)量關(guān)系是
FG=DC+AD
.(只寫答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:△ABC的高AD所在直線與高BE所在直線相交于點(diǎn)F.
(1)如圖1,若△ABC為銳角三角形,且∠ABC=45°,過點(diǎn)F作FG∥BC,交直線AB于點(diǎn)G,求證:FG+DC=AD;
(2)如圖2,若∠ABC=135°,過點(diǎn)F作FG∥BC,交直線AB于點(diǎn)G,則FG、DC、AD之間滿足的數(shù)量關(guān)系是
 

(3)在(2)的條件下,若AG=5
2
,DC=3,將一個(gè)45°角的頂點(diǎn)與點(diǎn)B重合并繞點(diǎn)B旋轉(zhuǎn),這個(gè)角的兩邊分別交線段FG于M、N兩點(diǎn)(如圖3),連接CF,線段CF分別與線段BM、線段BN相交于P、Q兩點(diǎn),若NG=
3
2
,求線段PQ的長(zhǎng).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:△ABC的高AD所在直線與高BE所在直線相交于點(diǎn)F,過點(diǎn)F作FG∥BC,交直線AB于點(diǎn)G.
(1)如圖1,若△ABC為銳角三角形,且∠ABC=45°.
求證:①△BDF≌△ADC;
②FG+DC=AD;
(2)如圖2,若∠ABC=135°,直接寫出FG、DC、AD之間滿足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年春季湖北省宜昌市枝江市雅畈中學(xué)九年級(jí)數(shù)學(xué)競(jìng)賽試卷(解析版) 題型:解答題

已知:△ABC的高AD所在直線與高BE所在直線相交于點(diǎn)F.
(1)如圖1,若△ABC為銳角三角形,且∠ABC=45°,過點(diǎn)F作FG∥BC,交直線AB于點(diǎn)G,求證:FG+DC=AD;
(2)如圖2,若∠ABC=135°,過點(diǎn)F作FG∥BC,交直線AB于點(diǎn)G,則FG、DC、AD之間滿足的數(shù)量關(guān)系是______;
(3)在(2)的條件下,若AG=,DC=3,將一個(gè)45°角的頂點(diǎn)與點(diǎn)B重合并繞點(diǎn)B旋轉(zhuǎn),這個(gè)角的兩邊分別交線段FG于M、N兩點(diǎn)(如圖3),連接CF,線段CF分別與線段BM、線段BN相交于P、Q兩點(diǎn),若NG=,求線段PQ的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案