【題目】如圖所示,在中,于點(diǎn)DBE平分,且于點(diǎn)ECD相交于點(diǎn)F,于點(diǎn)H,交BE于點(diǎn)G,下列結(jié)論:①;②;③;其中正確的是___________

【答案】①②③④

【解析】

先根據(jù)AAS證明△ADC≌△FDB,得到AD=DF,∠DAC=DFB,從而得出①正確;

RtADF中,由AD=DF求得∠DFA,根據(jù)等腰直角三角形的性質(zhì)求得∠HDC=,從而得到∠DFA=∠HDC,由平行線的判定得到④正確;

根據(jù)ASA證明△ABE≌△CBE,得到CE=AC,結(jié)合①中證明△ADC≌△FDB可得AC=BF,則得出③正確;

由等腰三角形的性質(zhì)、角平分線的性質(zhì)和三角形內(nèi)角和定理求得∠DFB,由等腰三角形的性質(zhì)、角平分線的性質(zhì)和三角形外角性質(zhì)求得∠DGF=,從而得到∠DFB=∠DGF,再由等角對(duì)等邊得到②正確.

于點(diǎn)D,于點(diǎn)E,

∴∠BDF=∠BDA=,∠BAC+∠ABF=∠DAC+∠ACD=

∴∠ABF=∠ACD,

在△ADC和△FDB

,

∴△ADC≌△FDBAAS),

AD=DF,∠DAC=DFB,

又∵DF+CF=CDCD=BD,

,故①正確;

AD=DF,于點(diǎn)D,

∴∠DAF=∠DFA=,

∵BD=DC,于點(diǎn)D,于點(diǎn)H,

∴∠HDC=∠HDB=

又∵∠DFA,

∴∠DFA=∠HDC,

,故④正確;

BE平分,且于點(diǎn)E,

∴∠ABE=∠CBE,∠AEB=∠CEB,

在△ABE和△CBE中

∴△ABE≌△CBE,

∴AE=CE,

∴CE=AC,

又∵△ADC≌△FDB

BF=AC,

,故③正確;

,于點(diǎn)D,

∴∠DBC=,

又∵BE平分

∴∠DBE=,

∴∠DFB=,

又∵∠HDB=,

∴∠DGF=∠DBG+∠BDG=+=,

∴∠DFB=∠DGF,

∴DG=DF,故②正確.

故答案為:①②③④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,C=90°,AC=3,BC=4分別以AB、AC、BC為邊在AB的同側(cè)作正方形ABEF、ACPQ、BDMC,四塊陰影部分的面積分別為S1、S2、S3、S4則S1+S2+S3+S4等于( )

A14 B16 C18 D20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一直角三角板的直角頂點(diǎn)在直線上,作射線三角板的各邊和射線都處于直線的上方.

1)將三角板繞點(diǎn)在平面內(nèi)旋轉(zhuǎn),當(dāng)平分時(shí),如圖1,如果,求的度數(shù);

2)如圖2,將三角板點(diǎn)在平面內(nèi)任意轉(zhuǎn)動(dòng),如果始終在內(nèi),且,請(qǐng)問(wèn): 有怎樣的數(shù)量關(guān)系?

3)如圖2,如果平分是否也平分?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著社會(huì)的發(fā)展,通過(guò)微信朋友圈發(fā)布自己每天行走的步數(shù)已經(jīng)成為一種時(shí)尚.健身達(dá)人小陳為了了解他的好友的運(yùn)動(dòng)情況.隨機(jī)抽取了部分好友進(jìn)行調(diào)查,把他們61日那天行走的情況分為四個(gè)類別:A(0~5000步)(說(shuō)明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),統(tǒng)計(jì)結(jié)果如圖所示:

請(qǐng)依據(jù)統(tǒng)計(jì)結(jié)果回答下列問(wèn)題:

(1)本次調(diào)查中,一共調(diào)查了   位好友.

(2)已知A類好友人數(shù)是D類好友人數(shù)的5倍.

①請(qǐng)補(bǔ)全條形圖;

②扇形圖中,“A”對(duì)應(yīng)扇形的圓心角為   度.

③若小陳微信朋友圈共有好友150人,請(qǐng)根據(jù)調(diào)查數(shù)據(jù)估計(jì)大約有多少位好友61日這天行走的步數(shù)超過(guò)10000步?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD的邊長(zhǎng)為6,E、FP分別是AB、CD、AD上的點(diǎn)(均不與正方形頂點(diǎn)重合)且PE=PF,PEPF.

1)求證:AE+DF=6

2)設(shè)AE=,五邊形EBCFP的面積為,求的函數(shù)關(guān)系式,并求出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 1,將兩個(gè)完全相同的三角形紙片 ABC DEC重合放置,其中∠C=90°,∠B=∠E=30°.

1)如圖2,固定△ABC,使△DEC 繞點(diǎn) C 旋轉(zhuǎn),當(dāng)點(diǎn) D 恰好落 AB 邊上時(shí),

①填空:線段 DE AC 的位置關(guān)系是

②設(shè)△BDC 的面積為 S1,△AEC 的面積為 S2,求證:S1=S2

2)當(dāng)△DEC 繞點(diǎn) C 旋轉(zhuǎn)到如圖 3 所示的位置時(shí),小明猜想(1 S1 S2 的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AECBC、CE 邊上的高,請(qǐng)你證明小明的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:中,,求證:.下面給出運(yùn)用反證法證明的四個(gè)步驟:①∴,這與三角形內(nèi)角和為矛盾

②因此假設(shè)不成立.

③假設(shè)在中,

④由,得,即

這四個(gè)步驟正確的順序應(yīng)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:點(diǎn)在直線上,點(diǎn)都在直線上(點(diǎn)在點(diǎn)的左側(cè)),連接平分

1)如圖1,求證:

2)如圖2,點(diǎn)上一點(diǎn),連接,若,求的度數(shù)

3)在(2)的條件下,點(diǎn)在直線上,連接,且,若,求的度數(shù)(要求:在備用圖中畫出圖形后,再計(jì)算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=100°,∠BCD=70°,點(diǎn)M,N分別在AB,BC上,將△BMN沿MN翻折,得△FMN,若MFAD,FNDC,求∠B的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案