如圖1,已知雙曲線數(shù)學(xué)公式與直線y2=k'x交于A,B兩點(diǎn),點(diǎn)A在第一象限.試解答下列問題:
(1)若點(diǎn)A的坐標(biāo)為(3,1),則點(diǎn)B的坐標(biāo)為______;
(2)當(dāng)x滿足:______時(shí),y1≤y2;
(3)過原點(diǎn)O作另一條直線l,交雙曲線數(shù)學(xué)公式于P,Q兩點(diǎn),點(diǎn)P在第一象限,如圖2所示.
①四邊形APBQ一定是______;
②若點(diǎn)A的坐標(biāo)為(3,1),點(diǎn)P的橫坐標(biāo)為1,求四邊形APBQ的面積.

解:(1)由A和B為反比例函數(shù)與一次函數(shù)的交點(diǎn),
得到A和B關(guān)于原點(diǎn)對(duì)稱,
∵A(3,1),
∴B(-3,-1);

(2)由圖象可得:當(dāng)-3≤x<0或x≥3時(shí),y1≤y2

(3)①∵OP=OQ,OA=OB,
∴四邊形APBQ為平行四邊形;
②過A作AM⊥x軸,過P作PN⊥x軸,如圖所示:

由A(3,1)在反比例函數(shù)圖象上,得到反比例解析式為y=,
∵P的橫坐標(biāo)為1,P在反比例函數(shù)圖象上,
∴將x=1代入反比例解析式得:y=3,即P(1,3),
∴AM=1,OM=3,PN=3,ON=1,MN=OM-ON=2,
則S△AOP=S四邊形OPAM-S△AOM=S△PON+S梯形AMNP-S△AOM
=PN•ON+(AM+PN)•MN-AM•OM
=×3×1+×(1+3)×2-×1×3
=4,
在△APB中,O為AB的中點(diǎn),即AO=BO,
∴S△AOP=S△BOP,
同理S△BOQ=S△AOQ=S△AOP=S△BOP,
又∵S平行四邊形APBQ=S△BOQ+S△AOQ+S△AOP+S△BOP,
∴S平行四邊形APBQ=4S△AOP=16.
故答案為:(1)(-3,-1);(2)-3≤x<0或x≥3;(3)①平行四邊形
分析:(1)由A和B為正比例函數(shù)與反比例函數(shù)的交點(diǎn),得到A和B關(guān)于原點(diǎn)對(duì)稱,由A的坐標(biāo)即可求出B的坐標(biāo);
(2)由A和B的橫坐標(biāo)及原點(diǎn)的橫坐標(biāo)0,將x軸分為四個(gè)范圍,分別為:x<-3,-3<x<0,0<x<3,x>3,找出一次函數(shù)在反比例函數(shù)上方的范圍即可;
(3)①由OP=OQ,OA=OB,利用對(duì)角線互相平分的四邊形為平行四邊形可得四邊形APBQ一定是平行四邊形;
②由A得坐標(biāo)確定出反比例函數(shù)解析式,將P得橫坐標(biāo)x=1代入反比例解析式中,求出P的縱坐標(biāo),確定出P的坐標(biāo),過P作PN垂直于x軸,過A作AM垂直于x軸,可得出PN,AM,ON,OM的長,進(jìn)而求出MN的長,根據(jù)四邊形OPAM的面積-三角形AOM的面積表示出三角形AOP的面積,而四邊形OPAM的面積=三角形OPN的面積+梯形AMNP的面積,可求出三角形AOP的面積,在三角形ABP中,由O為AB的中點(diǎn),根據(jù)等底同高得到三角形AOP的面積與三角形BOP的面積相等,同理得到三角形BOQ的面積=三角形AOQ的面積=三角形AOP的面積=三角形BOP的面積,而這四個(gè)三角形的面積之和為平行四邊形APBQ的面積,即可求出四邊形APBQ的面積.
點(diǎn)評(píng):此題考查了反比例函數(shù)的綜合題,涉及的知識(shí)有:對(duì)稱的性質(zhì),反比例函數(shù)的性質(zhì),正比例函數(shù)與反比例函數(shù)的交點(diǎn)問題,坐標(biāo)與圖形性質(zhì),平行四邊形的判定與性質(zhì),以及三角形、梯形面積的求法,利用了轉(zhuǎn)化及數(shù)形結(jié)合的思想,其中當(dāng)正比例函數(shù)與反比例函數(shù)要有交點(diǎn),必然有兩個(gè),且兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,靈活運(yùn)用此性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,已知雙曲線數(shù)學(xué)公式與直線y=數(shù)學(xué)公式交于A,B兩點(diǎn),點(diǎn)A在第一象限,點(diǎn)A的橫坐標(biāo)為4.

(1)求k的值;
(2)若雙曲線上一點(diǎn)C的縱坐標(biāo)為8,求△AOC的面積;
(3)如圖2,過原點(diǎn)的另一條直線交雙曲線于P、Q兩點(diǎn),若由點(diǎn)A、B、P、Q為頂點(diǎn)的四邊形面積為24,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,已知雙曲線數(shù)學(xué)公式與直線y2=k'x交于A,B兩點(diǎn),點(diǎn)A在第一象限.試解答下列問題:
(1)若點(diǎn)A的坐標(biāo)為(4,2),則點(diǎn)B的坐標(biāo)為______;當(dāng)x滿足:______時(shí),y1>y2;
(2)過原點(diǎn)O作另一條直線l,交雙曲線數(shù)學(xué)公式于P,Q兩點(diǎn),點(diǎn)P在第一象限,如圖2所示.
①四邊形APBQ一定是______;
②若點(diǎn)A的坐標(biāo)為(3,1),點(diǎn)P的橫坐標(biāo)為1,求四邊形APBQ的面積;
③設(shè)點(diǎn)A、P的橫坐標(biāo)分別為m、n,四邊形APBQ可能是矩形嗎?若可能,求m,n應(yīng)滿足的條件;若不可能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知雙曲線與直線y2=k'x交于A,B兩點(diǎn),點(diǎn)A在第一象限.試解答下列問題:

(1)若點(diǎn)A的坐標(biāo)為(4,2),則點(diǎn)B的坐標(biāo)為  ;當(dāng)x滿足:  時(shí),y1>y2

(2)過原點(diǎn)O作另一條直線l,交雙曲線于P,Q兩點(diǎn),點(diǎn)P在第一象限,如圖2所示.

①四邊形APBQ一定是  ;

②若點(diǎn)A的坐標(biāo)為(3,1),點(diǎn)P的橫坐標(biāo)為1,求四邊形APBQ的面積;

③設(shè)點(diǎn)A、P的橫坐標(biāo)分別為m、n,四邊形APBQ可能是矩形嗎?若可能,求m,n應(yīng)滿足的條件;若不可能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014屆江蘇省無錫市八年級(jí)3月月考數(shù)學(xué)試卷 題型:解答題

如圖1,已知雙曲線與直線交于A,B兩點(diǎn),點(diǎn)A在第一象限.試解答下列問題:

⑴若點(diǎn)A的坐標(biāo)為(3,1),則點(diǎn)B的坐標(biāo)為           ;

⑵當(dāng)x滿足:                        時(shí),;

⑶過原點(diǎn)O作另一條直線l,交雙曲線P,Q兩點(diǎn),點(diǎn)P在第一象限, 如圖2所示.

①四邊形APBQ一定是                  ;

② 若點(diǎn)A的坐標(biāo)為(3,1),點(diǎn)P的橫坐標(biāo)為1,求四邊形APBQ的面積;

 

查看答案和解析>>

同步練習(xí)冊答案