(實(shí)踐題)如圖,已知點(diǎn)P、Q分別在∠AOB的邊OA、OB上,按下列要求畫圖:

(1)畫直線PQ;

(2)過(guò)點(diǎn)P垂直于射線OB的直線;

(3)過(guò)點(diǎn)Q畫射線OA的垂線段.

答案:
解析:

解:如圖.

(1)直線PQ為所求;(2)直線PC為所求;(3)線段QD為所求.


提示:

按語(yǔ)句畫圖,即把文字轉(zhuǎn)化成圖形,再轉(zhuǎn)化成符號(hào).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(任選一題做)
(1)小明在一次實(shí)踐活動(dòng)課中,要對(duì)水管的外部進(jìn)行包扎,包扎時(shí)用帶子纏繞在管道外部.若要使帶子全部包住管道且不重疊(不考慮管道兩端的情況),需計(jì)算帶子的纏繞角度α(α指纏繞中將部分帶子拉成圖中所示的平面ABCD時(shí)的∠ABC,其中AB為管道側(cè)面母線的一部分).若帶子寬度為1,水管直徑為2,則α的余弦值為
 




(2)如圖,已知AD是等腰△ABC底邊上的高,且tan∠B=
34
,AC上有一點(diǎn)E,滿足AE:CE=2:3,則tan∠ADE的值是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

 

1.觀察發(fā)現(xiàn)

    如題27(a)圖,若點(diǎn)A,B在直線同側(cè),在直線上找一點(diǎn)P,使AP+BP的值最。 做法如下:作點(diǎn)B關(guān)于直線的對(duì)稱點(diǎn),連接,與直線的交點(diǎn)就是所求的點(diǎn)P

  再如題27(b)圖,在等邊三角形ABC中,AB=2,點(diǎn)E是AB的中點(diǎn),AD是高,在AD上找一點(diǎn)P,使BP+PE的值最。

如下:作點(diǎn)B關(guān)于AD的對(duì)稱點(diǎn),恰好與點(diǎn)C重合,連接CE交AD于一點(diǎn),則這

點(diǎn)就是所求的點(diǎn)P,故BP+PE的最小值為       

2.實(shí)踐運(yùn)用

如題27(c)圖,已知⊙O的直徑CD為4,弧AD所對(duì)圓心角的度數(shù)為60°,點(diǎn)B是弧AD的中點(diǎn),請(qǐng)你在直徑CD上找一點(diǎn)P,使BP+AP的值最小,并求BP+AP的最小值.

3.拓展延伸

如題27(d)圖,在四邊形ABCD的對(duì)角線AC上找一點(diǎn)P,使∠APB=∠APD.保留

作圖痕跡,不必寫出作法.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省無(wú)錫市惠山區(qū)七年級(jí)下學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

操作與實(shí)踐(7分)
【小題1】(1)如圖,已知△ABC,過(guò)點(diǎn)A畫一條平分三角形面積的直線;

【小題2】(2)如圖,已知,點(diǎn)E,F(xiàn)在上,點(diǎn)G,H在上,試說(shuō)明△EGO與△FHO的面積相等;

【小題3】(3)如圖,點(diǎn)M在△ABC的邊上,過(guò)點(diǎn)M畫一條平分三角形面積的直線.
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆江西省南昌市九年級(jí)下學(xué)期第二次聯(lián)考數(shù)學(xué)試卷(帶解析) 題型:解答題


【小題1】觀察發(fā)現(xiàn)
如題27(a)圖,若點(diǎn)A,B在直線同側(cè),在直線上找一點(diǎn)P,使AP+BP的值最小. 做法如下:作點(diǎn)B關(guān)于直線的對(duì)稱點(diǎn),連接,與直線的交點(diǎn)就是所求的點(diǎn)P
再如題27(b)圖,在等邊三角形ABC中,AB=2,點(diǎn)E是AB的中點(diǎn),AD是高,在AD上找一點(diǎn)P,使BP+PE的值最。
如下:作點(diǎn)B關(guān)于AD的對(duì)稱點(diǎn),恰好與點(diǎn)C重合,連接CE交AD于一點(diǎn),則這
點(diǎn)就是所求的點(diǎn)P,故BP+PE的最小值為       

【小題2】實(shí)踐運(yùn)用
如題27(c)圖,已知⊙O的直徑CD為4,弧AD所對(duì)圓心角的度數(shù)為60°,點(diǎn)B是弧AD的中點(diǎn),請(qǐng)你在直徑CD上找一點(diǎn)P,使BP+AP的值最小,并求BP+AP的最小值.

【小題3】拓展延伸
如題27(d)圖,在四邊形ABCD的對(duì)角線AC上找一點(diǎn)P,使∠APB=∠APD.保留
作圖痕跡,不必寫出作法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年高級(jí)中等學(xué)校招生考試數(shù)學(xué)卷(江蘇蘇州) 題型:解答題

觀察發(fā)現(xiàn)

    如題26(a)圖,若點(diǎn)A,B在直線同側(cè),在直線上找一點(diǎn)P,使AP+BP的值最。

    做法如下:作點(diǎn)B關(guān)于直線的對(duì)稱點(diǎn),連接,與直線的交點(diǎn)就是所求的點(diǎn)P

    再如題26(b)圖,在等邊三角形ABC中,AB=2,點(diǎn)E是AB的中點(diǎn),AD是高,在AD上找一點(diǎn)P,使BP+PE的值最小.

    做法如下:作點(diǎn)B關(guān)于AD的對(duì)稱點(diǎn),恰好與點(diǎn)C重合,連接CE交AD于一點(diǎn),則這

  點(diǎn)就是所求的點(diǎn)P,故BP+PE的最小值為        .  

         

題26(a)圖                     題26(b)圖               

(2)實(shí)踐運(yùn)用

    如題26(c)圖,已知⊙O的直徑CD為4,AD的度數(shù)為60°,點(diǎn)B是的中點(diǎn),在直徑CD上找一點(diǎn)P,使BP+AP的值最小,并求BP+AP的最小值.

      

題26(c)圖                        題26(d)圖

 (3)拓展延伸

    如題26(d)圖,在四邊形ABCD的對(duì)角線AC上找一點(diǎn)P,使∠APB=∠APD.保留

作圖痕跡,不必寫出作法.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案