4、如圖所示,已知AB∥CD,AD∥BC,AC與BD交于點(diǎn)O,AE⊥BD于E,CF⊥BD于E,圖中全等三角形有(  )
分析:根據(jù)題目的意思,可以推出△ABE≌△CDF,△AOE≌△COF,△ABO≌△CDO,△BCO≌△DOA,△ABC≌△CDA,△ABD≌△CDB,△ADE≌△CBF.再分別進(jìn)行證明.
解答:解:①△ABE≌△CDF
∵AB∥CD,AD∥BC
∴AB=CD,∠ABE=∠CDF
∵AE⊥BD于E,CF⊥BD于E
∴∠AEB=∠CFD
∴△ABE≌△CDF;
②△AOE≌△COF
∵AB∥CD,AD∥BC,AC為ABCD對(duì)角線
∴OA=OC,∠EOA=∠FOC
∵∠AEO=∠CFO
∴△AOE≌△COF;
③△ABO≌△CDO
∵AB∥CD,AD∥BC,AC與BD交于點(diǎn)O
∴OD=OB,∠AOB=∠COD,OA=OC
∴△ABO≌△CDO;
④△BOC≌△DOA
∵AB∥CD,AD∥BC,AC與BD交于點(diǎn)O
∴OD=OB,∠BOC=∠DOA,OC=OA
∴△BOC≌△DOA;
⑤△ABC≌△CDA
∵AB∥CD,AD∥BC
∴BC=AD,DC=AB,∠ABC=∠CDA
∴△ABC≌△CDA;
⑥△ABD≌△CDB
∵AB∥CD,AD∥BC
∴∠BAD=∠BCD,AB=CD,AD=BC
∴△ABD≌△CDA;
⑦△ADE≌△CBF
∵AD=BC,DE=BF,AE=CF
∴△DEC≌△BFA.
故選D.
點(diǎn)評(píng):本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、AAS,ASA、HL.同時(shí)考查了平行四邊形的性質(zhì),題目比較容易.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖所示,已知AB∥CD,EF平分∠CEG,∠1=80°,則∠2的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖所示,已知AB∥CD,分別探索下列四個(gè)圖形中∠P與∠A,∠C的關(guān)系.要求:(1)、(2)直接寫出結(jié)論,(3)、(4)寫出結(jié)論并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知AB為圓O的直徑,AC為弦,OD∥BC交AC于D,OD=2cm,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知AB=AC,BD⊥AC,試說(shuō)明∠BAC=2∠CBD.

查看答案和解析>>

同步練習(xí)冊(cè)答案