【題目】如圖,已知在平面直角坐標(biāo)系xOy中,拋物線m:y=﹣2x2﹣2x的頂點(diǎn)為C,與x軸兩個(gè)交點(diǎn)為P,Q.現(xiàn)將拋物線m先向下平移再向右平移,使點(diǎn)C的對(duì)應(yīng)點(diǎn)C′落在x軸上,點(diǎn)P的對(duì)應(yīng)點(diǎn)P′落在y軸上,則下列各點(diǎn)的坐標(biāo)不正確的是( 。
A. C(﹣,) B. C′(1,0) C. P(﹣1,0) D. P′(0,﹣)
【答案】B
【解析】分析:根據(jù)拋物線m的解析式求得點(diǎn)P、C的坐標(biāo),然后由點(diǎn)P′在y軸上,點(diǎn)C′在x軸上得到平移規(guī)律,由此可以確定點(diǎn)P′、C′的坐標(biāo).
詳解:∵y=﹣2x2﹣2x=﹣2x(x+1)或y=﹣2(x+)2+,
∴P(﹣1,0),O(0,0),C(﹣,).
又∵將拋物線m先向下平移再向右平移,使點(diǎn)C的對(duì)應(yīng)點(diǎn)C′落在x軸上,點(diǎn)P的對(duì)應(yīng)點(diǎn)P′落在y軸上,
∴該拋物線向下平移了個(gè)單位,向右平移了1個(gè)單位,
∴C′(,0),P′(0,﹣).
綜上所述,選項(xiàng)B符合題意.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某天我國(guó)一艘海監(jiān)船巡航到A港口正西方的B處時(shí),發(fā)現(xiàn)在B的北偏東60°方向,相距150海里處的C點(diǎn)有一可疑船只正沿CA方向行駛,C點(diǎn)在A港口的北偏東30°方向上,海監(jiān)船向A港口發(fā)出指令,執(zhí)法船立即從A港口沿AC方向駛出,在D處成功攔截可疑船只,此時(shí)D點(diǎn)與B點(diǎn)的距離為75海里.
(1)求B點(diǎn)到直線CA的距離;
(2)執(zhí)法船從A到D航行了多少海里?(≈1.414,≈1.732,結(jié)果精確到0.1海里)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B兩點(diǎn)在反比例函數(shù)y=的圖象上,C,D兩點(diǎn)在反比例函數(shù)y=的圖象上,AC⊥x軸于點(diǎn)E,BD⊥x軸于點(diǎn)F,AC=2,BD=3,EF=,則k2-k1的值為( )
A. 4 B. C. D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于任意有理數(shù)a,b,定義運(yùn)算:a⊙b=a(a+b)﹣1,等式右邊是通常的加法、減法、乘法運(yùn)算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.
(1)求(﹣2)⊙3的值;
(2)對(duì)于任意有理數(shù)m,n,請(qǐng)你重新定義一種運(yùn)算“⊕”,使得5⊕3=20,寫出你定義的運(yùn)算:m⊕n= (用含m,n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y=.
(1)若該反比例函數(shù)的圖象與直線y=kx+4(k≠0)只有一個(gè)公共點(diǎn),求k的值;
(2)如圖,反比例函數(shù)y= (1≤x≤4)的圖象記為曲線C1,將C1向左平移2個(gè)單位長(zhǎng)度,得曲線C2,請(qǐng)?jiān)趫D中畫出C2,并直接寫出C1平移到C2處所掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=x-2與y軸相交于點(diǎn)A,與反比例函數(shù)y=在第一象限內(nèi)的圖象相交于點(diǎn)B(m,2).
(1)求該反比例函數(shù)的關(guān)系式;
(2)若直線y=x-2向上平移后與反比例函數(shù)y=在第一象限內(nèi)的圖象相交于點(diǎn)C,且△ABC的面積為18,求平移后的直線對(duì)應(yīng)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(0,-3),動(dòng)點(diǎn)P在拋物線上.
(1)b =_________,c =_________,點(diǎn)B的坐標(biāo)為_____________;(直接填寫結(jié)果)
(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由;
(3)過動(dòng)點(diǎn)P作PE垂直y軸于點(diǎn)E,交直線AC于點(diǎn)D,過點(diǎn)D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長(zhǎng)度最短時(shí),求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,射線 OC在∠AOB的內(nèi)部,圖中共有 3個(gè)角:∠AOB、∠AOC 和∠BOC,若其中有一個(gè)角的度數(shù)是另一個(gè)角度數(shù)的兩倍,則稱射線 OC是∠AOB的奇妙線.
(1)一個(gè)角的角平分線_______這個(gè)角的奇妙線.(填是或不是);
(2)如圖 2,若∠MPN=60°,射線 PQ繞點(diǎn) P從 PN位置開始,以每秒 10°的速度逆時(shí)針旋轉(zhuǎn),當(dāng)∠QPN首次等于 180°時(shí)停止旋轉(zhuǎn),設(shè)旋轉(zhuǎn)的時(shí)間為 t(s).
① 當(dāng) t為何值時(shí),射線 PM是∠QPN 的奇妙線?
②若射線 PM 同時(shí)繞點(diǎn) P以每秒 5°的速度逆時(shí)針旋轉(zhuǎn),并與 PQ同時(shí)停止旋轉(zhuǎn).請(qǐng)求出當(dāng)射線 PQ是∠MPN的奇妙線時(shí) t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com