【題目】如圖,在四邊形中,,,點為邊上一點,將沿翻折,點落在對角線上的點處,連接并延長交射線于點.
(1)如果,求的長;
(2)當點在邊上時,連接,設(shè),求關(guān)于的函數(shù)關(guān)系式并寫出的取值范圍;
(3)連接,如果是等腰三角形,求的長.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,反比例函數(shù)(x>0)的圖象經(jīng)過點A(,1),射線AB與反比例函數(shù)圖象交于另一點B(1,a),射線AC與y軸交于點C,∠BAC=75°,AD⊥y軸,垂足為D.
(1)求k的值;
(2)求tan∠DAC的值及直線AC的解析式;
(3)如圖2,M是線段AC上方反比例函數(shù)圖象上一動點,過M作直線l⊥x軸,與AC相交于點N,連接CM,求△CMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子里裝有4個分別寫有數(shù)字﹣2,﹣1,0,1,2的小球,它們除數(shù)字不同外其余全部相同,現(xiàn)從盒子里隨機取出一個小球,將該小球上的數(shù)字為m,點P的坐標為(m,m2+1),則點P落在拋物線y=﹣4x2+8x+5與x軸所圍成的區(qū)域內(nèi)(含邊界)的概率是___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法不正確的是( 。
A. 所有矩形都是相似的
B. 若線段a=5cm,b=2cm,則a:b=5:2
C. 若線段AB=cm,C是線段AB的黃金分割點,且AC>BC,則AC= cm
D. 四條長度依次為lcm,2cm,2cm,4cm的線段是成比例線段
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC紙片上可按如圖所示方式剪出一正方體表面展開圖,直角三角形的兩直角邊與正方體展開圖左下角正方形的邊共線,斜邊恰好經(jīng)過兩個正方形的頂點,已知BC=24cm,則這個展開圖可折成的正方體的體積為_____cm3.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內(nèi)離杯底4cm的點C
處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的點A處,則螞蟻到達蜂蜜的最
短距離為 ▲ cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖 1,在△ABC 中,∠ACB=90°,BC=AC,點 D 在 AB 上,DE⊥AB交 BC 于 E,點 F 是 AE 的中點
(1) 寫出線段 FD 與線段 FC 的關(guān)系并證明;
(2) 如圖 2,將△BDE 繞點 B 逆時針旋轉(zhuǎn)α(0°<α<90°),其它條件不變,線段 FD 與線段 FC 的關(guān)系是否變化,寫出你的結(jié)論并證明;
(3) 將△BDE 繞點 B 逆時針旋轉(zhuǎn)一周,如果 BC=4,BE=2,直接寫出線段 BF 的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】居民區(qū)內(nèi)的“廣場舞”引起媒體關(guān)注,遼寧都市頻道為此進行過專訪報道.小平想了解本小區(qū)居民對“廣場舞”的看法,進行了一次抽樣調(diào)查,把居民對“廣場舞”的看法分為四個層次:A.非常贊同;B.贊同但要有時間限制;C.無所謂;D.不贊同.并將調(diào)查結(jié)果繪制了圖1和圖2兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息解答下列問題:
(1)求本次被抽查的居民有多少人?
(2)將圖1和圖2補充完整;
(3)求圖2中“C”層次所在扇形的圓心角的度數(shù);
(4)估計該小區(qū)4000名居民中對“廣場舞”的看法表示贊同(包括A層次和B層次)的大約有多少人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com