如圖,已知梯形ABCD中,BC⊥AB,∠DAB=60°,點P從點B出發(fā),沿BC、CD邊到D停止運動,設點P運動的路程為x,△ABP的面積為y,y關于x的函數(shù)圖象如圖,則梯形ABCD的面積是( 。ê贾07中考題改編)精英家教網(wǎng)
A、20
B、8
3
C、6+12
3
D、12+6
3
分析:認真觀察圖形,由右圖可知梯形中BC=6,CD=2,過D作DE⊥AB,利用勾股定理求出AE,然后利用梯形的面積公式可得答案.
解答:解:過D作DE⊥AB,E為垂足,
由右圖可知梯形中BC=6,CD=2,
精英家教網(wǎng)
∵BC⊥AB,CD∥AB,
∴四邊形BEDC為矩形,
∴DE=BC=6,
Rt△ADE中,∠DAB=60°,
AE=
DE
3
=
6
3
=2
3
,
∴S梯形ABCD=
1
2
(CD+AB)BC,
=
1
2
(2+2+2
3
)×6,
=12+6
3

故選D.
點評:本題考查了動點問題的函數(shù)圖象;認真觀察圖形,由右圖可知梯形中BC=6,CD=2是正確解答本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

9、如圖,已知梯形ABCD中,AD∥BC,BE平分∠ABC,BE⊥CD,∠A=110°,AD=3,AB=5,則BC的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

設△A1B1C1的面積是S1,△A2B2C2的面積為S2(S1<S2),當△A1B1C1∽△A2B2C2,且0.3≤
S1S2
≤0.4
時,則稱△A1B1C1與△A2B2C2有一定的“全等度”.如圖,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,連接AC.
(1)若AD=DC,求證:△DAC與△ABC有一定的“全等度”;
(2)你認為:△DAC與△ABC有一定的“全等度”正確嗎?若正確,說明理由;若不正確,請舉出一個反例說明.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在△ABC中,∠B=90°,AB=28cm,BC=28cm,點P從點A開始沿AB邊向點B以3cm/s的速度移動,點Q從點B開始沿BC邊向點C以1cm/s的速度移動,P,Q分別從A,B同時出發(fā),當其中一精英家教網(wǎng)點到達終點時,另一點也隨之停止.過Q作QD∥AB交AC于點D,連接PD,設運動時間為t秒時,四邊形BQDP的面積為s.
(1)用t的代數(shù)式表示QD的長.
(2)求s關于t的函數(shù)解析式,并求出運動幾秒梯形BQDP的面積最大?最大面積是多少?
(3)連接QP,在運動過程中,能否使△DPQ為等腰三角形?若存在,求出t的值,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•遂寧)如圖,已知等腰△ABC的面積為4cm2,點D、E分別是AB、AC邊的中點,則梯形DBCE的面積為
3
3
 cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀理解

(1)如圖①,△ABC中,D是BC中點,連接AD,直接回答S△ABD與S△ADC相等嗎?
相等
相等
(S表示面積);
應用拓展
(2)如圖②,已知梯形ABCD中,AD∥BC,E是AB的中點,連接DE、EC,試利用上題得到的結論說明S△DEC=S△ADE+S△EBC;
解決問題
(3)現(xiàn)有一塊如圖③所示的梯形試驗田,想種兩種農(nóng)作物做對比實驗,用一條過D點的直線,將這塊試驗田分割成面積相等的兩塊,畫出這條直線,并簡單說明另一點的位置.

查看答案和解析>>

同步練習冊答案