精英家教網 > 初中數學 > 題目詳情

【題目】如圖,等邊三角形ABC的邊長是6,點D、F分別是BCAC上的動點,且BDCF,以AD為邊作等邊三角形ADE,連接BFEF

1)求證:四邊形BDEF是平行四邊形;

2)連接DF,當BD的長為何值時,CDF為直角三角形?

3)設BDx,請用含x的式子表示等邊三角形ADE的面積.

【答案】(1)見解析;(2)BD=2或4;(3)SADEx﹣3)2+(0≤x≤6)

【解析】

(1):要證明四邊形BDEF是平行四邊形,一般采用對邊平行且相等來證明,因為已經有了DB=CF,只要有ABD全等ACE,就能得到∠ACE=ABD=60°CE=CF=EF=BD,再利用∠CFE60°=∠ACB,就能平行,故第一問的證;

(2):反推法,當CDF為直角三角形,又因為∠C=60°,當∠CDF=90°時,可以知道

2CD=CF,因為CF=BD,BD+CD=6,∴BD=4,當∠CFD=90°時,可以知道CD=2CF,因為CF=BDBD+CD=6,∴BD=2,故當BD=24時,CFD為直角三角形;

(3):求等邊三角形ADE的面積,只要知道邊長就可求出,但是AD是變化的,所以我們采用組合面積求解,利用四邊形ADCE減去CDE即可,又因為ABDACE,所以四邊形ADCE的面積等于ABD的面積,所以只需要求出ABC的面積與CDE即可,從而即可求面積.

解:(1

∵△ABC是等邊三角形,

ABBC,∠BAC=∠ABD=∠BCF60°

BDCF,

∴△ABD≌△BCFSAS),

BDCF,

如圖1,連接CE,∵△ADE是等邊三角形,

ADAE,∠DAE60°

∴∠BAD=∠CAE,

ABAC

∴△ABD≌△ACESAS),

∴∠ACE=∠ABD60°BDCE,

CFCE

∴△CEF是等邊三角形,

EFCFBD,∠CFE60°=∠ACB,

EFBC

BDEF,

∴四邊形BDEF是平行四邊形;

2)∵△CDF為直角三角形,

∴∠CFD90°或∠CDF90°

當∠CFD90°時,∵∠ACB60°

∴∠CDF30°,

CD2CF

由(1)知,CFBD

CD2BD,

即:BC3BD6,

BD2,

x2

當∠CDF90°時,∵∠ACB60°

∴∠CFD30°,

CF2CD,

CFBD

BD2CD,

BC3CD6

CD2,

xBD4

即:BD24時,△CDF為直角三角形;

3)如圖,

連接CE,由(1)△ABD≌△ACE,

SABDSACEBDCE,

BDCF

∴△CEF是等邊三角形,

EMCEx

SCDECD×EM6x×xx6x

BHCHBC3,

AH3

SABCBCAH9

SADES四邊形ADCESCDE

SACD+SACESCDE

SACD+SABDSCDE

SABCSCDE

9x6x

x32+0≤x≤6

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,已知平行四邊形ABCD的點A(0,﹣2)、點B(3m,4m+1)(m﹣1),點C(6,2),則對角線BD的最小值是( 。

A. 3 B. 2 C. 5 D. 6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下面是作已知角的角平分線”的尺規(guī)作圖過程.

已知:如圖1,MON

求作:射線OP,使它平分MON

作法:如圖2

(1)以點O為圓心,任意長為半徑作弧,交OM于點A,交ON于點B

(2)連結AB;

(3)分別以點AB為圓心,大于AB的長為半徑作弧,兩弧相交于點P

(4)作射線OP

所以,射線OP即為所求作的射線.

請回答:該尺規(guī)作圖的依據是______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一次函數y1kx+by2=﹣4x+a的圖象如圖所示,且A0,4),C(﹣2,0).

1)由圖可知,不等式kx+b0的解集是   ;

2)若不等式kx+b>﹣4x+a的解集是x1

①求點B的坐標;

②求a的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】中小學時期是學生身心變化最為明顯的時期,這個時期孩子們的身高變化呈現一定的趨勢,7~15歲期間生子們會經歷一個身高發(fā)育較迅速的階段,我們把這個年齡階段叫做生長速度峰值段,小明通過上網查閱《2016年某市兒童體格發(fā)育調查表》,了解某市男女生7~15歲身高平均值記錄情況,并繪制了如下統計圖,并得出以下結論:

10歲之前,同齡的女生的平均身高一般會略高于男生的平均身高;

②10~12歲之間,女生達到生長速度峰值段,身高可能超過同齡男生;

7~15歲期間,男生的平均身高始終高于女生的平均身高;

④13~15歲男生身高出現生長速度峰值段,男女生身高差距可能逐漸加大.

以上結論正確的是(

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法中,正確的有(  )

(1)、的平方根是±5;(2)、五邊形的內角和是540°;(3)、拋物線y=x2+2x+4x軸無交點;(4)、等腰三角形兩邊長為6cm4cm,則它的周長是16cm.

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩個工程隊計劃修建一條長15千米的鄉(xiāng)村公路,已知甲工程隊每天比乙工程隊每天多修路0.5千米,乙工程隊單獨完成修路任務所需天數是甲工程隊單獨完成修路任務所需天數的1.5倍

(1)求甲、乙兩個工程隊每天各修路多少千米?

(2)若甲工程隊每天的修路費用為0.5萬元,乙工程隊每天的修路費用為0.4萬元,要使兩個工程隊修路總費用不超過5.2萬元,甲工程隊至少修路多少天?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商店5月1日舉行促銷優(yōu)惠活動,當天到該商店購買商品有兩種方案,方案一:用168元購買會員卡成為會員后,憑會員卡購買商店內任何商品,一律按商品價格的8折優(yōu)惠;方案二:若不購買會員卡,則購買商店內任何商品一律按商品價格的9.5折優(yōu)惠.

(1)若小敏不購買會員卡,所購買商品的價格為120元時,實際應支付多少元?

2)請幫小敏算一算,她購買商品的價格為多少元時,兩個方案所付金額相同?

3)購買商品的價格______元時,采用方案一更合算.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,點A的坐標為(0,1),點B的坐標為(3,1),點C的坐標為(4,3),如果要使△ABD與△ABC全等,那么點D的坐標是_____.

查看答案和解析>>

同步練習冊答案