【題目】如圖,ANCBB、NAC同側(cè),BM、CN交于點(diǎn)D,ACBC,且∠A+MDN180°.

1)如圖1,當(dāng)∠NAC90°,求證:BMCN;

2)如圖2,當(dāng)∠NAC為銳角時(shí),試判斷BMCN關(guān)系并證明;

3)如圖3,在(1)的條件下,且∠MBC30°,一動(dòng)點(diǎn)E在線段BM上運(yùn)動(dòng)過程中,連CE,將線段CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至CF,取BE中點(diǎn)P,連APFP.設(shè)四邊形APFC面積為S,若AM1,MC1,在E點(diǎn)運(yùn)動(dòng)過程中,請寫出S的取值范圍   

【答案】1)詳見解析;(2BMCN,理由詳見解析;(31S3

【解析】

1)先證∠N∠CMB,再證∠ACB∠A,可推出△ACN≌△CBM,即可得出結(jié)論;

2)如圖2,延長NAG,使AGCM,證△GAC≌△MCB,得到GCMB,再證GCCN,即可推出結(jié)論;

3)如圖31,當(dāng)點(diǎn)E在線段BM上運(yùn)動(dòng)至與點(diǎn)M重合時(shí),四邊形APFC的面積最小,過點(diǎn)P分別作AC,BC的垂線,垂足分別為H,Q,求出此時(shí)四邊形APFC的面積;當(dāng)圖32,當(dāng)點(diǎn)E在線段BM上運(yùn)動(dòng)至與點(diǎn)B重合時(shí),點(diǎn)P也與BE重合,四邊形APFC的面積最大,此時(shí)A,CF在同一條直線上,即△ABF的面積,求出其面積,即可寫出S的取值范圍.

1)證明:∵∠NAC90°∠A+∠MDN180°,

∴∠NDM90°,

∴∠N+∠ACN∠ACN+∠CMD90°,

∴∠N∠CMB,

∵AN∥CB,

∴∠A+∠ACB180°

∴∠ACB∠A90°,

∵ACBC,

∴△ACN≌△CBMAAS),

∴BMCN;

2)解:BMCN,理由如下,

如圖2,延長NAG,使AGCM,

∵AN∥BC,

∴∠GAC∠MCB,

∵ACBC,

∴△GAC≌△MCBSAS),

∴GCMB∠G∠BMC,

在四邊形AMDN中,∠NAC+∠MDN180°

∴∠N+∠AMD180°,

∵∠AMD+∠BMC180°,

∴∠N∠BMC,

∴∠N∠G,

∴GCCN,

∴BMCN;

3∵AM1MC1,

∴ACAM+MC,

∴BC

由(1)知,∠ACB90°,

Rt△MCB中,∠MBC30°

∴MCBC1,

如圖31,當(dāng)點(diǎn)E在線段BM上運(yùn)動(dòng)至與點(diǎn)M重合時(shí),四邊形APFC的面積最小,

過點(diǎn)P分別作AC,BC的垂線,垂足分別為H,Q,

點(diǎn)PBE的中點(diǎn),

∴PHBC,PQMC

∴S四邊形APFCSAPC+SPCF

ACPH+CFPQ

×××1×

1;

當(dāng)圖32,當(dāng)點(diǎn)E在線段BM上運(yùn)動(dòng)至與點(diǎn)B重合時(shí),點(diǎn)P也與B,E重合,四邊形APFC的面積最大,

此時(shí)A,CF在同一條直線上,即△ABF的面積,

∵ACBCCF∠ACB∠BCF90°,

∴△ABF是等腰直角三角形,

∴S四邊形APFCSABF

×2×

3,

故答案為:1≤S≤3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB90°DAB上一點(diǎn),過D點(diǎn)作AB垂線,交ACE,交BC的延長線于F

1)∠1與∠B有什么關(guān)系?說明理由.

2)若BCBD,請你探索ABFB的數(shù)量關(guān)系,并且說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,∠MAN=45°,∠MAN繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊分別交CB,DC(或它們的延長線)于點(diǎn)MNAHMN于點(diǎn)H

1)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM=DN時(shí),請你直接寫出線段AHAB的數(shù)量關(guān)系______.(不需證明)

2)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BMDN時(shí),問(1)中線段AHAB的數(shù)量關(guān)系還成立嗎?若成立,給出證明,若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程

求證:無論取任何實(shí)數(shù)時(shí),方程總有實(shí)數(shù)根;

當(dāng)拋物線為正整數(shù))圖象與軸兩個(gè)交點(diǎn)的橫坐標(biāo)均為整數(shù),求此拋物線的解析式;

已知拋物線恒過定點(diǎn),求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將兩張完全相同的矩形紙片按如圖方式放置,為重合的對角線.重疊部分為四邊形,

試判斷四邊形為何種特殊的四邊形,并說明理由;

,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小華剪了兩條寬為1的紙條,交叉疊放在一起,且它們較小的交角為60°,則它們重疊部分的面積為(  )

A. 3 B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線ykxk0)經(jīng)過點(diǎn)(mm)(m0).線段BC的兩個(gè)端點(diǎn)分別在x軸與直線ykx上滑動(dòng)(B、C均與原點(diǎn)O不重合),且BC.分別作BPx軸,CP⊥直線ykx,直線BPCP交于點(diǎn)P.經(jīng)探究,在整個(gè)滑動(dòng)過程中,O、P兩點(diǎn)間的距離為定值,則該距離為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=CD,BD是對角線.分別過點(diǎn)ACAEBD于點(diǎn)E,CFBD于點(diǎn)F,且AE=CF

1)求證:ABCD

2)若EBF中點(diǎn),且△ABE的面積為1,則四邊形ABCD的面積為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)為(﹣4,0),點(diǎn)B的坐標(biāo)為(0,﹣2),把點(diǎn)A繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到的點(diǎn)C恰好在拋物線y=ax2上,點(diǎn)P是拋物線y=ax2上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O重合),把點(diǎn)P向下平移2個(gè)單位得到動(dòng)點(diǎn)Q,則:

(1)直接寫出AB所在直線的解析式、點(diǎn)C的坐標(biāo)、a的值;

(2)連接OP、AQ,當(dāng)OP+AQ獲得最小值時(shí),求這個(gè)最小值及此時(shí)點(diǎn)P的坐標(biāo);

(3)是否存在這樣的點(diǎn)P,使得∠QPO=OBC,若不存在,請說明理由;若存在,請你直接寫出此時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案