【題目】如圖,已知一次函數(shù)y=ax+b(a,b為常數(shù),a≠0)的圖象與x軸,y軸分別交于點(diǎn)A,B,且與反比例函數(shù)(k為常數(shù),k≠0)的圖象在第二象限內(nèi)交于點(diǎn)C,作CD⊥x軸于D,若OA=OD=OB=3.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)觀察圖象直接寫(xiě)出不等式0<ax+b≤的解集;
(3)在y軸上是否存在點(diǎn)P,使得△PBC是以BC為一腰的等腰三角形?如果存在,請(qǐng)直接寫(xiě)出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由
【答案】(1);(2)-3≤x<0;(3)存在滿(mǎn)足條件的點(diǎn)P,其坐標(biāo)為(0,-1)或(0,9)或(0,12)
【解析】
(1)根據(jù)平行線分線段成比例性質(zhì)可得,求出A(3,0),B(0,4),C(-3,8),再用待定系數(shù)法求解;(2)由題意可知所求不等式的解集即為直線AC在x軸上方且在反比例函數(shù)圖象下方的圖象所對(duì)應(yīng)的自變量的取值范圍:0<-x+4≤-;(3)△PBC是以BC為一腰的等腰三角形,有BC=BP或BC=PC兩種情況.
解:(1)∵CD⊥OA,
∴DC∥OB,
∴,
∴CD=2OB=8,
∵OA=OD=OB=3,
∴A(3,0),B(0,4),C(-3,8),
把A、B兩點(diǎn)的坐標(biāo)分別代入y=ax+b可得
,解得,
∴一次函數(shù)解析式為,
∵反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)C,
∴k=-24,
∴反比例函數(shù)的解析式為y=-
(2)由題意可知所求不等式的解集即為直線AC在x軸上方且在反比例函數(shù)圖象下方的圖象所對(duì)應(yīng)的自變量的取值范圍,
即線段BC(包含C點(diǎn),不包含B點(diǎn))所對(duì)應(yīng)的自變量x的取值范圍,
∵C(-3,8),
∴0<-x+4≤-的解集為-3≤x<0
(3)∵B(0,4),C(-3,8),
∴BC=5,
∵△PBC是以BC為一腰的等腰三角形,
∴有BC=BP或BC=PC兩種情況,
①當(dāng)BC=BP時(shí),即BP=5,
∴OP=BP+OB=4+5=9,或OP=BP-OB=5-4=1,
∴P點(diǎn)坐標(biāo)為(0,9)或(0,-1);
②當(dāng)BC=PC時(shí),則點(diǎn)C在線段BP的垂直平分線上,
∴線段BP的中點(diǎn)坐標(biāo)為(0,8),
∴P點(diǎn)坐標(biāo)為(0,12);
綜上可知存在滿(mǎn)足條件的點(diǎn)P,其坐標(biāo)為(0,-1)或(0,9)或(0,12)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,已知的半徑為5,圓心的坐標(biāo)為,交軸于點(diǎn),交軸于,兩點(diǎn),點(diǎn)是上的一點(diǎn)(不與點(diǎn)、、重合),連結(jié)并延長(zhǎng),連結(jié),,.
(1)求點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)在上時(shí).
①求證:;
②如圖2,在上取一點(diǎn),使,連結(jié).求證:;
(3)如圖3,當(dāng)點(diǎn)在上運(yùn)動(dòng)的過(guò)程中,試探究的值是否發(fā)生變化?若不變,請(qǐng)直接寫(xiě)出該定值;若變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線的圖象經(jīng)過(guò)點(diǎn)、和原點(diǎn),為直線上方拋物線上的一個(gè)動(dòng)點(diǎn).
(1)求直線及拋物線的解析式;
(2)過(guò)點(diǎn)作軸的垂線,垂足為,并與直線交于點(diǎn),當(dāng)為等腰三角形時(shí),求的坐標(biāo);
(3)設(shè)關(guān)于對(duì)稱(chēng)軸的點(diǎn)為,拋物線的頂點(diǎn)為,探索是否存在一點(diǎn),使得的面積為,如果存在,求出的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中有形狀、大小、質(zhì)地完全一樣的3個(gè)紅球和2個(gè)白球,下列說(shuō)法正確的是( 。
A.從中隨機(jī)抽出一個(gè)球,一定是紅球
B.從袋中抽出一個(gè)球后,再?gòu)拇谐槌鲆粋(gè)球,出現(xiàn)紅球或白球的概率一樣大
C.從袋中隨機(jī)抽出2個(gè)球,出現(xiàn)都是紅球的概率為
D.從袋中抽出2個(gè)球,出現(xiàn)顏色不同的球的概率是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)學(xué)興趣小組的小穎想測(cè)量教學(xué)樓前的一棵樹(shù)的樹(shù)高,下午課外活動(dòng)時(shí)她測(cè)得一根長(zhǎng)為1m的竹竿的影長(zhǎng)是0.8m,但當(dāng)她馬上測(cè)量樹(shù)高時(shí),發(fā)現(xiàn)樹(shù)的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上(如圖),他先測(cè)得留在墻壁上的影高為1.2m,又測(cè)得地面的影長(zhǎng)為2.6m,請(qǐng)你幫她算一下,樹(shù)高是( )
A.4.25mB.4.45mC.4.60mD.4.75m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn),過(guò)點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于點(diǎn)F.
(1)求證:四邊形ADCF是菱形;
(3)若AC=6,AB=8,求菱形ADCF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一塊矩形木板,木工采用如圖的方式,在木板上截出兩個(gè)面積分別為18dm2和32dm2的正方形木板.
(1)求剩余木料的面積.
(2)如果木工想從剩余的木料中截出長(zhǎng)為1.5dm,寬為ldm的長(zhǎng)方形木條,最多能截出 塊這樣的木條.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為1,AB、AD上各有一點(diǎn)P、Q,如果的周長(zhǎng)為2,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)拋物線T:y=ax2+c(a> 0)與直線L:y=kx-4(k> 0)交A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)).
(1)如圖,若點(diǎn)A(,-),且a+c=-1.
①求拋物線T和直線L的解析式;
②求△AOB的面積.
(2)設(shè)點(diǎn)C是點(diǎn)B關(guān)于y軸的對(duì)稱(chēng)點(diǎn),當(dāng)點(diǎn)A,O,C三點(diǎn)共線時(shí),求實(shí)數(shù)c的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com