【題目】如圖,點為等邊三角形內(nèi)一點,連接,,,以為一邊作,且,連接、.
(1)判斷與的大小關系并證明;
(2)若,,,判斷的形狀并證明.
【答案】(1)AO=CM,見解析;(2)△OMC是直角三角形,見解析.
【解析】
(1)可證出△OBM是等邊三角形,得出OM=OB=BM,由∠ABC=∠OBM得出∠ABO=∠CBM,根據(jù)SAS證明△AOB≌△CMB,即可得出結(jié)論;
(2)由勾股定理的逆定理即可得出結(jié)論.
解:(1)AO=CM;理由如下:
∵∠OBM=60°,OB=BM,
∴ △OBM是等邊三角形
∴ OM=OB=BM,
∠ABC=∠OBM=60°
∴∠ABO=∠CBM,
在△AOB和△CMB中, ,
∴△AOB≌△CMB(SAS),
∴ AO=CM;
(2)△OMC是直角三角形;理由如下:
在△OMC中,OM2=100,OC2+CM2=62+82=100,
∴OM2=OC2+CM2,
∴△OMC是直角三角形.
故答案為:(1)AO=CM,見解析;(2)△OMC是直角三角形,見解析.
科目:初中數(shù)學 來源: 題型:
【題目】光華農(nóng)機租賃公司共有50臺聯(lián)合收割機,其中甲型20臺,乙型30臺,先將這50臺聯(lián)合收割機派往A、B兩地區(qū)收割小麥,其中30臺派往A地區(qū),20臺派往B地區(qū).兩地區(qū)與該農(nóng)機租賃公司商定的每天的租賃價格見表:
每臺甲型收割機的租金 | 每臺乙型收割機的租金 | |
A地區(qū) | 1800 | 1600 |
B地區(qū) | 1600 | 1200 |
(1)設派往A地區(qū)x臺乙型聯(lián)合收割機,租賃公司這50臺聯(lián)合收割機一天獲得的租金為y(元),求y與x間的函數(shù)關系式,并寫出x的取值范圍;
(2)若使農(nóng)機租賃公司這50臺聯(lián)合收割機一天獲得的租金總額不低于79 600元,說明有多少種分配方案,并將各種方案設計出來;
(3)如果要使這50臺聯(lián)合收割機每天獲得的租金最高,請你為光華農(nóng)機租賃公司提一條合理化建議.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我校圖書館大樓工程在招標時,接到甲乙兩個工程隊的投標書,每施工一個月,需付甲工程隊工程款16萬元,付乙工程隊12萬元。工程領導小組根據(jù)甲乙兩隊的投標書測算,可有三種施工方案:
(1)甲隊單獨完成此項工程剛好如期完工;
(2)乙隊單獨完成此項工程要比規(guī)定工期多用3個月;
(3)若甲乙兩隊合作2個月,剩下的工程由乙隊獨做也正好如期完工。
你覺得哪一種施工方案最節(jié)省工程款,說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小王同學準備籌集資金為貧困山區(qū)兒童捐款,打算從淘寶網(wǎng)上購進一批閃光發(fā)箍和熒光棒在某演唱會現(xiàn)場出售,其中閃光發(fā)箍的購買價格為6元/個,熒光棒的購買價格為8元/個.
(1)小王計劃購進閃光發(fā)箍和熒光棒共120個,且將閃光發(fā)箍加價40%、熒光棒加價20%后出售.當所有物品售完后,若利潤不低于256元,則小王至少應購買閃光發(fā)箍多少個?
(2)小王調(diào)整了方案,決定將閃光發(fā)箍的售價在進價的基礎上上漲(a+10)%、熒光棒的售價在進價基礎上上漲a%,在(1)中閃光發(fā)箍購買量取得最小值的情況下,將閃光發(fā)箍的購買量提a%,而熒光棒的購買量保持不變,則全部售出后,最終可獲利246.4元,請求出a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,解決問題:
我們把一個能被17整除的自然數(shù)稱為“節(jié)儉數(shù)”,“節(jié)儉數(shù)”的特征是:若把一個自然數(shù)的個位數(shù)字截去,再把剩下的數(shù)減去截去的那個個位數(shù)字的5倍,如果差是17的整數(shù)倍(包括0),則原數(shù)能被17整除.如果差太大或心算不易看出是否是17的倍數(shù),就繼續(xù)上述的“截尾、倍大、相減、驗差”的過程,直到能清楚判斷為止.
例如:判斷1675282是不是“節(jié)儉數(shù)”.判斷過程:167528﹣2×5=167518,16751﹣8×5=16711,1671﹣1×5=1666,166﹣6×5=136,到這里如果你仍然觀察不出來,就繼續(xù)13﹣6×5=﹣17,﹣17是17的整數(shù)倍,所以1675282能被17整除.所以1675282是“節(jié)儉數(shù)”.
(1)請用上述方法判斷7259和2098752 是否是“節(jié)儉數(shù)”,并說明理由;
(2)一個五位節(jié)儉數(shù),其中個位上的數(shù)字為b,十位上的數(shù)字為a,請求出這個數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛慢車和一輛快車沿相同的路線從A地到B地,所行駛的路程與時間的函數(shù)圖形如圖所示,下列說法正確的有( )
①快車追上慢車需6小時;②慢車比快車早出發(fā)2小時;③快車速度為46km/h;④慢車速度為46km/h; ⑤A、B兩地相距828km;⑥快車從A地出發(fā)到B地用了14小時
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,CE是外角∠ACD的平分線,BE是∠ABC的平分線.
(1)求證:∠A=2∠E,以下是小明的證明過程,請在括號里填寫理由.
證明:∵∠ACD是△ABC的一個外角,∠2是△BCE的一個外角,(已知)
∴∠ACD=∠ABC+∠A,∠2=∠1+∠E(_________)
∴∠A=∠ACD﹣∠ABC,∠E=∠2﹣∠1(等式的性質(zhì))
∵CE是外角∠ACD的平分線,BE是∠ABC的平分線(已知)
∴∠ACD=2∠2,∠ABC=2∠1(_______)
∴∠A=2∠2﹣2∠1(_________)
=2(∠2﹣∠1)(_________)
=2∠E(等量代換)
(2)如果∠A=∠ABC,求證:CE∥AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,A是反比例函數(shù)圖象上一點,過點A作AB⊥y軸于點B,點P在x軸上,△ABP的面積為4,則這個反比例函數(shù)的解析式為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC的邊長為3cm,動點P從點A出發(fā),以每秒1cm的速度,沿A→B→C的方向運動,到達點C時停止,設運動時間為x(s),y=PC2,則y關于x的函數(shù)的圖像大致為 ( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com