【題目】甲、乙兩地相距135千米,大小兩輛汽車從甲地開往乙地,大汽車比小汽車早出發(fā)4小時,小汽車比大汽車早到30分鐘,小汽車和大汽車的速度之比為5∶2,求兩車的速度.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,不經(jīng)過原點(diǎn)的直線與雙曲線y=相交于點(diǎn)A(m,2),B(n,﹣1),其中m>0,n<0.
(1)求m與n之間的數(shù)量關(guān)系;
(2)若OA=OB,求該雙曲線和直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,在平面直角坐標(biāo)系xOy中,A(0,5),C(,0),AOCD為矩形,AE垂直于對角線OD于E,點(diǎn)F是點(diǎn)E關(guān)于y軸的對稱點(diǎn),連AF、OF.
(1)求AF和OF的長;
(2)如圖②,將△OAF繞點(diǎn)O順時針旋轉(zhuǎn)一個角α(0°<α<180°),記旋轉(zhuǎn)中的△OAF為△OA′F′,在旋轉(zhuǎn)過程中,設(shè)A′F′所在的直線與線段AD交于點(diǎn)P,與線段OD交于點(diǎn)Q,是否存在這樣的P、Q兩點(diǎn),使△DPQ為等腰三角形?若存在,求出此時點(diǎn)P坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了普及環(huán)保知識,增強(qiáng)環(huán)保意識,某中學(xué)組織了環(huán)保知識競賽活動,初中三個年級根據(jù)初賽成績分別選出了10名同學(xué)參加決賽(滿分為100分)如表所示:
決賽成績(單位:分)
(1)請你填寫下表:
平均數(shù) | 眾數(shù) | 中位數(shù) | |
七年級 | 85.5 | 87 | |
八年級 | 85.5 | 85 | |
九年級 | 84 |
(2)請從以下兩個不同的角度對三個年級的決賽成績進(jìn)行分析:
從平均數(shù)和眾數(shù)相結(jié)合看(分析哪個年級成績好些):;
從平均數(shù)和中位數(shù)相結(jié)合看(分析哪個年級成績好些):;
(3)如果在每個年級參加決賽的選手中分別選出三人參加決賽,你認(rèn)為哪個年級的實(shí)力更強(qiáng)一些。說明理由:。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,對角線相交于點(diǎn)O;E、F、G、H分別是AD、BD、 BC、AC的中點(diǎn).
(1)說明四邊形EFGH是平行四邊形;
(2)當(dāng)四邊形ABCD滿足一個什么條件時,四邊形EFGH是菱形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于平面內(nèi)任意一點(diǎn)(x,y),若規(guī)定以下兩種變換:
①f(x,y)=(x+2,y),
②g(x,y)=(﹣x,﹣y),例如按照以上變換有:f(1,1)=(3,1);g(f(1,1))=g(3,1)=(﹣3,﹣1).
則f(g(2,5))=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鄉(xiāng)村在開展“美麗鄉(xiāng)村”建設(shè)時,決定購買A,B兩種樹苗對村里的主干道進(jìn)行綠化改造,已知購買A種樹苗3棵,B種樹苗4棵,需要380元;購買A種樹苗5棵,B種樹苗2棵,需要400元.
(1)求購買A,B兩種樹苗每棵各需多少元?
(2)現(xiàn)需購買這兩種樹苗共100棵,要求購買A種樹苗不少于60棵,且用于購買這兩種樹苗的資金不超過5620元.則有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,對角線、交于點(diǎn),將沿直線翻折,點(diǎn)落在點(diǎn)處,且,連接.求證:
()是等邊三角形.
().
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com